## SENIOR FRESHMAN CHEMISTRY

## Chemical Thermodynamics

(Course of ten lectures)

Prof J. Corish
jcorish@tcd.ie

## COURSE SYNOPSIS

This course will follow from your Junior Freshman treatment of this subject with the three laws of thermodynamics being formally introduced. The course will extend the range of state functions that are considered and in terms of the First Law develop the relationship between $\mathrm{C}_{\mathrm{p}}$ and $\mathrm{C}_{\mathrm{v}}$ (heat capacities at constant pressure and constant volume, respectively) and introduce the variation of enthalpy changes with temperature (Kirchoff's Law).

The concept of entropy, used in the second law to assist in the derivation of a criterion for direction of chemical change, will be introduced by means of the Carnot cycle. The methods used to evaluate Third Law entropies will be explained, as will the existence and nature of residual entropy in some substances.

The course will then move on to consider the thermodynamics of open systems and the concept of the chemical potential. After its introduction, the chemical potential will be utilised to describe and to derive relationships for both physical and chemical equilibria. The thermodynamic basis for the Gibbs Phase Rule will be illustrated and the ClausiusClapeyron and Van't Hoff equations derived. Finally, relationships between the chemical potentials of a component present at equilibrium in different phases will be used to develop the thermodynamic treatment of ideal mixtures. Equations will be derived for the ideal solubilities of gases and solids and the thermodynamic basis for Henry's and Raoult's Laws and for the colligative properties of solutions will be illustrated. In this way a firm thermodynamic foundation will be provided for a number of the concepts and equations introduced empirically in Junior Fresh Physical Chemistry.

## Reading:

The chapters on thermodynamics in modern Physical Chemistry (such as those authored or co-authored by P. W. Atkins) will probably be most easily readable and useful.
Other books are:
'The Principles of Chemical Equilibrium', K. Denbigh (Cambridge)
‘Chemical Thermodynamics’ D. J. G. Ives (McDonald)
'An introduction to the study of Chemical Thermodynamics' D.H.Everett (Longmans)
'Basic Chemical Thermodynamics' E. Brian Smith (Clarendon, Oxford)
'The Second Law' P. W. Atkins (Scientific American Books)
Relevant Chapters in 'Physical Chemistry' Thomas Engel and Philip Reid (Pearson)

## Some Definitions - and a review

Thermodynamics: Science of heat and temperature and of the laws governing their inter-conversion i.e., heat into mechanical, electrical, chemical, or biological forms of energy.

Phenomenological theory concerning macroscopic properties such as pressure, temperature volume etc... It is independent of microscopic explanations e.g., the atomic theory.
strengths: not dependent on these explanations.
weaknesses: does not give any insight into atomic phenomena.

## Classical Thermodynamics:

self-contained, constructed as a set of postulates - the laws of thermodynamics completely general and is used by physicists, chemists, engineers and biologists. Can be handled completely mathematically and then adapted for specific cases - this is not how we will handle it.

It is an exact science - similar to geometry - and based on a number of theorems or laws the laws of thermodynamics

As a matter of interest - we are not in a position to and will not study this aspect of the subject - classical thermodynamics can be shown to be bridged to atomic theory and behaviour by statistical thermodynamics (statistical mechanics). So it is, in fact, in complete harmony with our current understanding of chemistry and other subjects. This bridge would not be necessary in order for classical thermodynamics to stand.

Deals with EQUILIBRIUM STATES only
not with paths by which such different states are connected.
not with the rates at which such paths may be traversed.

## EQUILIBRUIM STATES particularly as the term relates to chemical systems:

temperature uniform throughout and at equilibrium with its surroundings;
mechanical properties balanced i.e. pressure uniform; and
No net chemical change - this allows for dynamic equilibrium.

SYSTEM: A thermodynamic system is that part of the physical universe the properties of which are under observation. The system is confined to a definite place in space by boundaries that separate it from the rest of the universe - the surroundings.

A system is isolated when its boundary prevents any interaction with the surroundings. Clearly a completely isolated system would not be observable and so the concept is ideal.

Closed system: possibility of energy exchange with the surroundings but no transfer of matter
Open System: can exchange both energy and matter with its surroundings Adiabatic System: no heat transfer across the boundary is possible.

## PROPERTIES OF A SYSTEM

Extensive Properties: the value of the property for the whole body is the sum of the values for all of its constituent parts e.g., mass, volume....

Intensive Properties: can be specified at each point in a system and may vary from point to point when equilibrium has not been attained e.g., pressure, density....

The STATE of a system is specified by giving the values of all pertinent macroscopic properties so that the system can be precisely duplicated elsewhere.

A change in state is completely defined when the initial and final states are specified.
The path of the change is defined by giving the initial state, the sequence of intermediate states arranged in order traversed and the final state.

A cycle is traversed when a system that has undergone a change in state returns to its initial state.

## STATE FUNCTIONS (thermodynamic properties)

Quantities that depend on the state of the system only and not, for example, on its history are called state functions e.g., volume, temperature and pressure are state variables for a homogeneous system.

| $\Delta \mathbf{X}$ | $\mathbf{X}_{\mathrm{f}}$ | $\mathbf{X}_{\mathbf{i}}$ |
| :--- | :--- | :--- |
| change in <br> state function | Final |  |
| Value |  | Initial |
|  |  | Value |

$\Delta \mathbf{X}$ is independent of the path followed to effect the change. The change in the value of a state function taken through a cycle must therefore be equal to zero.

State functions may be related by an equation of state e.g., that for an ideal gas
$\mathrm{PV}=\mathrm{nRT}$

## FIRST LAW OF THERMODYNAMICS

"Die Energie der Welt ist konstant" (Clausius)
This law is an extension of the principle of the conservation of energy and can be introduced by looking at a number of different ways in which energy can be put into a system.


System is at equilibrium
Its state can be changed by
(i) WORK - do work on system or allow it to do work on the surroundings.

WORK (pressure x volume (change in volume)) force/area(length $\left.{ }^{2}\right) \mathrm{x}\left(\right.$ length $\left.^{3}\right)=$ force x length
(ii) HEAT - put system in contact with another system at different temperature - allow heat flow to occur.

These do not take account of other possible changes which could be brought about by external fields (magnetic, electrical etc.) or by addition or removal of gas from the system.

Results: the work required to bring a thermally insulated system from one state to another is independent of the source of the work and of the path followed.

Suggestion: for a thermally isolated system there is certain property that changes by the amount of work done on or by the system.

Called INTERNAL ENERGY Symbol U
$\Delta \mathrm{U}$ (adiabatic) $=-\mathrm{w}$ (adiabatic)
$\Delta \mathbf{U}=$ change in the internal energy $\mathbf{w}=$ work done by the system
U is a state function (thermodynamic property)
$\Delta \mathbf{U}=\mathbf{U}_{\mathbf{f}}-\mathbf{U}_{\mathbf{i}} \quad$ independent of source of the work and of the path followed from state i to state $f$.
$(\mathrm{i} \equiv$ initial and $\mathrm{f} \equiv$ final $)$

Results: Second method: it turns out that when no work is done on or by the system that the changes in the internal energy of the system $\Delta \mathbf{U}$ are equal to the energy transferred to or from the system by thermal contact, i.e., the heat transferred.
$\Delta \mathrm{U}$ (zero work) $=\mathrm{q}$ (zero work)

| $\Delta \mathbf{U}=$ change in the internal | $\mathbf{q}=$ heat absorbed |
| :--- | :--- |
| energy of the system | by the system |

The First Law can then be formulated as follows:

$$
\Delta \mathbf{U}=\mathbf{q}-\mathbf{w}
$$

Change in internal energy $=$ heat absorbed by the system - work done by the system

U is a state function
q and w are not, in general, state functions
Q. How is the internal energy stored?
A. As the translational, vibrational, rotational, electronic intermolecular energies of the atoms, molecules in the system. These molecules possess electronic energy and are constantly moving about and rotating and vibrating - if heated they can move, vibrate etc. more quickly.

NO ABSOLUTE VALUES of $\mathbf{U}$ - we can speak only of changes in $U$, or $\Delta U$.

WORK: exists only at the time at which it is done - form of energy transfer.
Units - the fundamental unit is the Joule - a force of 1 Newton along a path of 1 meter remember force x distance

Electrically - 1 coulomb through 1 volt.
(the thermodynamical calorie is defined as 4.1840 Joules).

## DIFFERENCE BETWEEN HEAT AND WORK

HEAT: transfer that causes or utilizes chaotic "motion" in the surroundings
WORK: transfer of energy that utilizes or causes uniform motion of atoms in the surroundings.
(Fire came before machines!)
Having established the principal idea regarding the internal energy we will now see that it is better to use another type of energy which takes pressure-volume work into account automatically - called the heat content or enthalpy. It is especially suitable because we live in a constant pressure ( 1 atmosphere) world. For this reason you have already been introduced to enthalpy.

Expansion/Contraction work is very common and important. System expands against or is compressed by an outside pressure P - typically 1 atmosphere.

$$
\begin{aligned}
\mathrm{dw}=\text { work done } & =\text { force } \mathrm{x} \text { displacement } \\
& =P \times \mathrm{P} \times \mathrm{dx} \\
& =\mathrm{pdV}
\end{aligned}
$$

Here P is the pressure, A the area over which it acts and dx the displacement so that A x $d x$ is the volume change $d V$. Integrating from the final to the initial volume then gives the work done, w as being equal to


From the First law $q=\Delta U+w$
We can measure heat changes (calorimetrically) fairly readily. So that if no work other than pressure volume work is done and if the increase in volume during a reaction is $\Delta \mathrm{V}$ then
$\Delta \mathrm{U}=\mathrm{q}-\mathrm{w}=\mathrm{q}-\mathrm{PdV}=\mathrm{q}-\mathrm{P}\left(\mathrm{V}_{\mathrm{f}}-\mathrm{V}_{\mathrm{i}}\right)$
$\therefore \mathrm{U}_{\mathrm{f}}-\mathrm{U}_{\mathrm{i}}=\Delta \mathrm{U}=\mathrm{q}-\mathrm{PV}_{\mathrm{f}}+\mathrm{PV} \mathrm{V}_{\mathrm{i}}$ so that
$\left(U_{f}+P V_{f}\right)-\left(U_{i}+P V_{i}\right)=q$

Here it is obvious that the heat absorbed during the reaction is a quantity that depends only on the initial and final states because $\mathrm{U}, \mathrm{P}$ and V are all state functions.

So this more useful state function is defined as the enthalpy (or heat content. The symbol is $\mathbf{H}$

## ENTHALPY $\quad \mathbf{H}=\mathbf{U}+\mathbf{P V}$

U is part of this function - again we do not attempt to give absolute values - only changes, i.e., $\Delta \mathrm{H}$ values, are measured.

ENTHALPY is the basis for thermochemistry (Leaving Certificate course and JF).

Reminder about the Law of Hess (see also below):

Although this law was originally derived from empirical observation and formulated by Hess, it is clear that it follows automatically from the fact that enthalpy is a state function.
$\Delta \mathrm{H}$, the enthalpy change, is the heat absorbed or given out in a reaction occurring at constant pressure. We shall see later that $\Delta \mathrm{H}$ always influences, and sometimes dominates, the size of the equilibrium constant, K , for a reaction.

| heat absorbed (taken in) | ENDOTHERMIC | $\Delta \mathrm{H}$ positive |
| :--- | :--- | :--- |
| heat evolved (given out) | EXOTHERMIC | $\Delta \mathrm{H}$ negative |

## RELATIONSHIP BETWEEN $\mathrm{C}_{\mathrm{p}}$ AND $\mathrm{C}_{\mathrm{v}}$

- GENERAL CASE AND IDEAL GAS CASE

$$
\begin{array}{ll}
\mathrm{C}_{\mathrm{p}}=\left(\frac{\partial H}{\partial T}\right)_{\mathrm{P}} & \mathrm{C}_{\mathrm{V}}=\left(\frac{\partial U}{\partial T}\right)_{\mathrm{V}} \\
\mathrm{C}_{\mathrm{p}}-\mathrm{C}_{\mathrm{V}} \quad=\quad\left(\frac{\partial H}{\partial T}\right)_{\mathrm{P}}-\quad\left(\frac{\partial U}{\partial T}\right)_{\mathrm{P}} & \\
\mathrm{H}=\mathrm{U}+\mathrm{PV} & \\
\left(\frac{\partial H}{\partial T}\right)_{\mathrm{P}}=\quad\left(\frac{\partial U}{\partial T}\right)_{\mathrm{P}}+\mathrm{P}\left(\frac{\partial V}{\partial T}\right)_{\mathrm{P}} & \Delta \mathrm{P}=\mathrm{O} \\
& \text { at constant } \mathrm{P} \tag{2}
\end{array}
$$

$$
\mathrm{U}=\mathrm{f}(\mathrm{~T}, \mathrm{~V})
$$

$$
\begin{array}{ll}
\mathrm{dU}=\left(\frac{\partial V}{\partial T}\right)_{\mathrm{V}} d T & +\left(\frac{\partial U}{\partial V}\right)_{T} d V \quad \text { (total differential) } \\
\left(\frac{\partial U}{\partial T}\right)_{\mathrm{P}}=\left(\frac{\partial U}{\partial T}\right)_{\mathrm{V}} & +\left(\frac{\partial U}{\partial V}\right)_{\mathrm{T}}\left(\frac{\partial V}{\partial T}\right)_{\mathrm{V}} \tag{3}
\end{array}
$$

Substitute (2) into (1)
$\mathrm{C}_{\mathrm{p}}-\mathrm{C}_{\mathrm{v}}=\left(\frac{\partial U}{\partial T}\right)_{\mathrm{P}}+\mathrm{P}\left(\frac{\partial V}{\partial T}\right)_{\mathrm{P}}-\left(\frac{\partial U}{\partial T}\right)_{\mathrm{T}}$
Substitute (3) into (4)
$\mathrm{C}_{\mathrm{p}}-\mathrm{C}_{\mathrm{v}}=\left(\frac{\partial U}{\partial T}\right)_{\mathrm{P}}+\mathrm{P}\left(\frac{\partial V}{\partial T}\right)_{\mathrm{P}}+\left(\frac{\partial U}{\partial V}\right)_{\mathrm{T}}\left(\frac{\partial V}{\partial T}\right)_{\mathrm{P}}-\left(\frac{\partial U}{\partial T}\right)_{\mathrm{P}}$

$$
\mathrm{Cp}-\mathrm{Cv} \quad=\mathrm{P}\left(\frac{\partial V}{\partial T}\right)_{\mathrm{P}}+\left(\frac{\partial U}{\partial V}\right)_{\mathrm{T}}+\left(\frac{\partial V}{\partial T}\right)_{\mathrm{P}}
$$

External - Contribution to Cp Internal - change in internal Through change in volume with Temperature by external pressure P
energy with volume with volume with P

$$
\mathrm{C}_{\mathrm{p}}-\mathrm{C}_{\mathrm{v}}=\left\{\left(\frac{\partial U}{\partial V}\right)_{\mathrm{T}}+P\right\}\left(\frac{\partial V}{\partial T}\right)_{\mathrm{P}}
$$

For a perfect gas $\left(\frac{\partial U}{\partial V}\right)_{T}=O \quad$ Joules Experiment $U=f(T)$ only for ideal gas

$$
\begin{aligned}
\mathrm{C}_{\mathrm{p}}-\mathrm{C}_{\mathrm{v}} & =\mathrm{p}\left(\frac{V U}{\partial T}\right)_{\mathrm{P}} \\
& =\mathrm{p}\left(\frac{\partial V}{\partial T}\right)_{\mathrm{P}} \\
& =\mathrm{p}\left(\frac{n R}{P}\right)=\mathrm{nR}
\end{aligned}
$$

1 mole

$$
\mathrm{C}_{\mathrm{p}}-\mathrm{C}_{\mathrm{v}}=\mathrm{R} \text { for ideal gas }
$$

(i) In general $\mathrm{C}_{\mathrm{p}}>\mathrm{C}_{\mathrm{v}}$ because extra work is done in expansion against external pressure and "internal" pressure $\left(\frac{\partial U}{\partial V}\right)_{T}$.
(ii) Internal contribution is zero for ideal gas - large for liquids and solids.

## ISOTHERMAL REVERSIBLE COMPRESSION OF AN IDEAL GAS

A very common type of work is EXPANSION work which is done when a system expands against an outside pressure or is compressed by such an external pressure.
$\mathrm{dw}=$ work done $\quad=\quad$ force x displacement

$$
=\quad \text { pressure } \mathrm{x} \text { area } \mathrm{x} \text { displacement }
$$

$$
=\quad \mathrm{pdV}
$$

so that $\quad \mathrm{w}=\int_{V_{i}}^{v_{f}} p d V$
p is the pressure and $\mathrm{V}_{\mathrm{i}}$ and $\mathrm{V}_{\mathrm{f}}$ are the initial and final volumes, respectively.

In the limit a reversible reaction proceeds infinitely slowly through a sequence of equilibrium states: therefore the equation of state for an ideal gas can be used

$$
\mathrm{pV}=\mathrm{nRT}
$$

so that $\quad \mathrm{p} \quad=\quad \frac{\mathrm{nRT}}{\mathrm{V}}$ and
hence $\quad \mathrm{w} \quad=\quad \int_{v_{i}}^{v_{f}} \frac{n R T}{\mathrm{~V}} \mathrm{dV}$
and since the process is isothermal

$$
\begin{aligned}
& \mathrm{w} \quad=\quad \mathrm{nRT} \int_{\mathrm{v}_{\mathrm{i}}}^{\mathrm{v}_{\mathrm{f}}} \frac{\mathrm{dV}}{\mathrm{~V}} \text { so that } \\
& =\quad \frac{\mathrm{V}_{\mathrm{f}}}{\mathrm{~V}_{\mathrm{i}}}
\end{aligned}
$$

also since $p_{i} V_{i}=p_{f} V_{f}$ for an ideal gas the work is also equal
to $\quad n R T \ln \frac{\mathrm{p}_{\mathrm{i}}}{\mathrm{p}_{\mathrm{f}}}=$

## Questions:

(i) What would the value of w be if the expansion took place against a constant pressure?
(ii) What is the maximum work obtainable from the expansion of a gas?

## REVERSIBLE ADIABATIC EXPANSION OF AN IDEAL GAS



Because the change is adiabatic $\mathrm{T}_{\mathrm{i}} \neq \mathrm{T}_{\mathrm{f}}$

$$
\begin{aligned}
\mathrm{dU} & =\delta q-\delta \mathrm{w} \quad(\delta q=0) \\
& =-\delta \mathrm{w}=-\mathrm{PdV} \\
& \\
\text { also } \mathrm{c}_{\mathrm{v}} & =\frac{\mathrm{dU}}{\mathrm{dT}_{\mathrm{v}}}
\end{aligned}
$$

U for an ideal gas is independent of V and p and depends only on T

$$
\begin{aligned}
& d U=c_{v} d T \quad d U=-p d V \\
& c_{v} d T+p d V=0 \quad \text { also for ideal gas } \mathrm{pV}=\mathrm{nRT} \\
& \mathrm{c}_{\mathrm{v}} \mathrm{dT}+\frac{\mathrm{nRT}}{\mathrm{~V}} \mathrm{dV}=0 \\
& \mathrm{c}_{\mathrm{v}} \frac{\mathrm{dT}}{\mathrm{~T}}+{ }_{\mathrm{nR}} \frac{\mathrm{dV}}{\mathrm{~V}}=0
\end{aligned}
$$

Integrate initial to final state and assume and assume $\mathrm{c}_{\mathrm{v}}$ independent of T .
now $\quad c_{p}-c_{v}=n R$ and we define $\left(\frac{c_{p}}{c_{v}}\right)=\gamma$

Therefore $\quad \gamma-1=\frac{\mathrm{c}_{\mathrm{p}}}{\mathrm{c}_{\mathrm{v}}}-1=\frac{\mathrm{c}_{\mathrm{p}}-\mathrm{c}_{\mathrm{v}}}{\mathrm{c}_{\mathrm{v}}}=\frac{\mathrm{nR}}{\mathrm{c}_{\mathrm{v}}}$
$\ln \left(\frac{T_{f}}{T_{i}}\right)+(\gamma-1) \ln \left(\frac{V_{f}}{V_{i}}\right)=0$

Therefore $\quad \frac{T_{i}}{T_{f}}=\left(\frac{V_{f}}{V_{i}}\right)^{\gamma-1}$
also

$$
\frac{\mathrm{T}_{\mathrm{i}}}{\mathrm{~T}_{\mathrm{f}}}=\frac{\mathrm{P}_{\mathrm{i}} \mathrm{~V}_{\mathrm{i}}}{\mathrm{P}_{\mathrm{f}} \mathrm{~V}_{\mathrm{f}}}
$$

$$
\frac{\mathrm{P}_{\mathrm{i}} \mathrm{~V}_{\mathrm{i}}}{\mathrm{P}_{\mathrm{f}} \mathrm{~V}_{\mathrm{f}}}=\left(\frac{\mathrm{V}_{\mathrm{f}}}{\mathrm{~V}_{\mathrm{i}}}\right)^{\gamma-1}
$$

Therefore
or

$$
\mathrm{P}_{\mathrm{i}} \mathrm{~V}_{\mathrm{i}}^{\gamma}=\mathrm{P}_{\mathrm{f}} \mathrm{~V}_{\mathrm{f}}^{\gamma}
$$

Problem: $\quad 100 \mathrm{~g}$ of nitrogen at 298 K are held by a piston under 30 atm pressure. The pressure is suddenly released to 10 atm and the gas adiabatically expands. If $\underline{\mathrm{c}}_{\mathrm{v}}$ for nitrogen is $20.71 \mathrm{~J} \mathrm{~mol}^{-1} \mathrm{~K}^{-1}$ calculate the final temperature of the gas.

What are $\Delta \mathrm{U}$ and $\Delta \mathrm{H}$ for the change?
Assume that the gas is ideal.

## VARIATION OF ENTHALPY WTH TEMPERATURE

(Kirchoff, 1858)


Same reaction at two temperatures, $\mathrm{T}_{1}$ and $\mathrm{T}_{2}$
Are the enthalpies of reaction, $\Delta \mathrm{H}_{\mathrm{T} 2}$ and $\Delta \mathrm{H}_{\mathrm{T} 1}$ the same?
Complete the cyclic pathway: $\oint \Delta \mathrm{H}=\mathrm{O}$

$$
\begin{aligned}
& \Delta \mathrm{H}_{1}+\Delta \mathrm{H}_{\mathrm{T} 2}-\Delta \mathrm{H}_{2}-\Delta \mathrm{H}_{\mathrm{T} 1}=\mathrm{O} \text { so that } \\
& \Delta \mathrm{H}_{\mathrm{T} 2}=\Delta \mathrm{H}_{\mathrm{T} 1}-\Delta \mathrm{H}_{1}+\Delta \mathrm{H}_{2} \\
& \Delta \mathrm{H}_{2}=\int_{\mathrm{T}_{1}}^{\mathrm{T}_{2}} \mathrm{C}_{\mathrm{p}} \text { (reactants ) dT } \\
& \Delta \mathrm{H}_{2}=\int_{T_{1}}^{T_{2}} \mathrm{C}_{\mathrm{p}} \text { (products) dT }
\end{aligned}
$$

So that if we define $C_{p}$ (products) $-C_{p}($ reactants $)=\Delta C_{p}$ we have

$$
\Delta \mathrm{H}_{\mathrm{T} 2}=\Delta \mathrm{H}_{\mathrm{T} 1}+\int_{\mathrm{T}_{1}}^{\mathrm{T}_{2}} \Delta \mathrm{C}_{\mathrm{p}} \mathrm{dT}
$$

The difference between $\Delta \mathrm{H}_{\mathrm{T} 2}$ and $\Delta \mathrm{H}_{\mathrm{T} 1}$ depends on
(i) the difference between $\mathrm{T}_{2}$ and $\mathrm{T}_{1}$

- if $\mathrm{T}_{2} \approx \mathrm{~T}_{1}$, then $\Delta \mathrm{H}_{\mathrm{T} 2} \approx \Delta \mathrm{H}_{\mathrm{T} 1}$
(ii) the value of $\Delta \mathrm{C}_{\mathrm{p}}$ - would you expect this be large?


## Problem 1

The value of $\Delta \mathrm{H}$ at 298 K is -92.422 kJ for the reaction $\mathrm{N}_{2}(\mathrm{~g})+3 \mathrm{H}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{NH}_{3}(\mathrm{~g})$
Given the heat capacity at constant pressure values $\left(\mathrm{JK}^{-1} \mathrm{~mol}^{-1}\right)$ below calculate the value of the enthalpy change for this reaction at 932 K .
$\underline{C}_{p}\left(\mathrm{H}_{2}\right)=\quad 28.772+0.276 \times 10^{-3} \mathrm{~T}+1.167 \times 10^{-6} \mathrm{~T}^{2}$
$\underline{C}_{p}\left(\mathrm{~N}_{2}\right)=\quad 26.347+7.607 \times 10^{-3} \mathrm{~T}-14.428 \times 10^{-6} \mathrm{~T}^{2}$
$\underline{\mathrm{C}}_{\mathrm{p}}\left(\mathrm{NH}_{3}\right)=24.757+37.483 \times 10^{-3} \mathrm{~T}+7.377 \times 10^{-6} \mathrm{~T}^{2}$

## Problem 2 Supplemental 1996 Question 1(b)

The value of the enthalpy change, $\Delta \mathrm{H}$, for the reaction

$$
2 \mathrm{~A}(\mathrm{~g})+\mathrm{B}(\mathrm{~g}) \Rightarrow \mathrm{C}(\mathrm{~g})
$$

at $300 \mathrm{~K}^{\text {is }} 24.2 \mathrm{~kJ} \mathrm{~mol}^{-1}$. Calculate the value of $\Delta \mathrm{H}$ at 500 K given the following heat capacity data.

| Substance | Heat Capacity $\left(\underline{\mathbf{C}}_{\mathbf{p}} \mathbf{J K}\right.$ |
| :---: | :--- |
| A | $12.6+0.50 \times 10^{-3} \mathrm{~T}$ |
| B | $29.4+0.75 \times 10^{-3} \mathrm{~T}$ |
| C | $31.7+0.68 \times 10^{-3} \mathrm{~T}$ |

What would be the effect of increasing the pressure on this reaction?

# SENIOR FRESHMAN CHEMISTRY 

## FUNCTIONS OF TWO VARIABLES <br> - EXACT DIFFERENTIALS

A linear differential expression containing two variables of the form

$$
d Z(x, y) \quad=M(x, y) d x+N(x, y) d y
$$

is an exact differential if there exists a function $f(x, y)$ such that $\operatorname{df}(x, y)=d Z(x, y)$

If dZ is an exact differential the line integral (i.e., the integral over some path), $\int d z(x, y)$ depends only on the initial and final states i.e.

State Function.

The integral over a cycle $\oint \mathrm{dZ}(\mathrm{x}, \mathrm{y})=\mathrm{O}$ (initial and final states the same) and

$$
\partial^{z} Z / \partial x \partial y \quad=\quad \partial^{2} Z / \partial y \partial x \quad \begin{gathered}
\text { CROSS DIFFENTITIATION } \\
\text { IDENTITY }
\end{gathered}
$$

Example 1

$$
\begin{aligned}
& Z=f(x, y)=2 x^{3}+3 x^{2} y^{2}+4 x+3 y^{2}+1 \\
& (\partial Z / \partial x)_{y}=6 x+6 x y^{2}+4 \text { and }(\partial z / \partial y)_{x}=6 x^{2} y+6 y
\end{aligned}
$$

also

$$
\begin{aligned}
& \left(\partial^{2} Z / \partial x \delta y\right)=12 x y \quad \text { and } \quad\left(\partial^{2} Z / \partial y \partial x\right)=12 x y \\
& \text { i.e. }\left(\partial^{2} Z / \partial x \delta y\right)=\left(\partial^{2} Z / \partial y \delta x\right)
\end{aligned}
$$

Example 2 Ideal Gas $\mathrm{PV}=\mathrm{nRT}$ or $\mathrm{P}=\frac{n R T}{V}$

$$
\left(\frac{\partial P}{\partial V}\right)_{T}=-\frac{n R T}{V^{2}} \quad \text { and } \quad\left(\partial^{2} P / \partial V \partial T\right)=-\frac{n R}{V^{2}}
$$

while

$$
(\partial P / \partial T)_{\mathrm{V}}=\frac{n R}{V} \quad \text { and } \quad\left(\partial^{2} P / \partial T \delta V\right)=-\frac{n R}{V^{2}}
$$

## CROSS DIFFERENTIATION IDENTITY

## EULER OR MAXWELL RELATIONS

1. $\mathrm{du}=\mathrm{TdS}-\mathrm{pdV}$

$$
\left(\frac{\partial u}{\partial V}\right)_{\mathrm{s}}-\mathrm{p} ;\left(\frac{\partial u}{\partial \mathrm{~s}}\right)_{\mathrm{v}}=\mathrm{T} \quad\left(\frac{\partial P}{\partial s}\right)_{\mathrm{v}}-\left(\frac{\partial T}{\partial V}\right)_{\mathrm{v}}
$$

2. $\mathrm{dH}=\mathrm{TdS}+\mathrm{VdP}$

$$
\left(\frac{\partial H}{\partial P}\right)_{\mathrm{S}}=\mathrm{V} ;\left(\frac{\partial H}{\partial \mathrm{~s}}\right)_{p}=\mathrm{T} \quad\left(\frac{\partial T}{\partial P}\right)_{\mathrm{S}}=\left(\frac{\partial v}{\partial \mathrm{~s}}\right) P
$$

3. $\quad \mathrm{dF}=-\mathrm{SdT}-\mathrm{PdV}$

$$
\left(\frac{\partial F}{\partial V}\right)_{\mathrm{T}}=-\mathrm{p} ;\left(\frac{\partial F}{\partial T}\right)_{\mathrm{V}}=-\mathrm{S} \quad\left(\frac{\partial P}{\partial T}\right)_{\mathrm{V}}=\left(\frac{\partial S}{\partial V}\right)_{\mathrm{T}}
$$

4. $\quad \mathrm{dG}=-\mathrm{SdT}+\mathrm{VdP}$

$$
\left(\frac{\partial G}{\partial P}\right)_{\mathrm{T}}=\mathrm{V} ;\left(\frac{\partial G}{\partial T}\right)_{\mathrm{P}}=-\mathrm{S} \quad\left(\frac{\partial V}{\partial T}\right)_{\mathrm{P}}=-\left(\frac{\partial S}{\partial P}\right)_{\mathrm{T}}
$$

$2^{\text {nd }}$ Differentials

## THE SECOND LAW OF THERMODYNAMICS

The First Law 'balances the books' - energy may be transformed from one form to another - never created or destroyed. This is intuitively easy to understand but does not give any indication of the direction of change. The Second Law sums up our experiences with equilibria just as the First Law sums up our experiences with energy and so it allows us to predict the direction of physical and chemical changes.

The purpose here is to establish a criterion for the feasibility of a given physical or chemical transformation under specified conditions. What is needed to do this is a state function (thermodynamic property) that changes in a characteristic manner when the reaction proceeds spontaneously. The objective is attained indirectly by considering a function called entropy (symbol $\mathbf{S}$ ) which is the criterion for change in an isolated system and then combining it with the tendency for energy change to get the criterion for change in a real system. This combination, which is the criterion for spontaneous change, turns out to be the change in the Gibbs Free Energy function, $\Delta \mathbf{G}$, given by the equation

$$
\Delta \mathrm{G}=\Delta \mathrm{H}-\mathrm{T} \Delta \mathrm{~S}
$$

$\Delta \mathrm{G}$ is less than zero for all spontaneous changes: when $\Delta \mathrm{G}$ is equal to zero the system is at equilibrium and a change for which $\Delta \mathrm{G}$ is greater than zero is not thermodynamically feasible in the direction specified.

## ENTROPY

The entropy, S , of a system is an extensive state function which is defined for an infinitesimal isothermal process by:

$$
\mathrm{dS}=\delta \mathrm{q}_{\mathrm{rev}} / \mathrm{T}
$$

Here $\delta \mathrm{q}_{\mathrm{rev}}$ is the heat absorbed by the system if the process is carried out reversibly. This equation clearly shows the importance of reversible processes in thermodynamics even though they cannot occur in nature and even if they could they would be so slow as to take an infinite time to progress through a series of equilibrium states. The value of the entropy can only be found if we can invent a means to determine the value of $\delta q_{\mathrm{rev}}$ - i.e., devise a way in which the change can be carried out reversibly and the heat change calculated.

We will use the Carnot cycle to show that entropy so defined is a State function.

In a physical interpretation entropy is a measure of molecular disorder and may also be defined as
$\mathrm{S}=\mathrm{k} \ln \Omega$
Here $\Omega$ is the number of microscopic realisations of specified macrostate of fixed energy. The tendency is for $\Omega$ to maximise under the randomising influence of temperature.

The concept of entropy in an isolated system will be demonstrated by examining in detail the isothermal intermixing of two gases. To do this it is convenient to consider that an infinitesimal change in entropy ( dS ) for a system can be divided into an external part due to its interaction with its surroundings $\left(\mathrm{d}_{\mathrm{e}} \mathrm{S}\right)$ and an internal part due to changes occurring within the system itself $\left(\mathrm{d}_{\mathrm{i}} \mathrm{S}\right)$ so that:
$\mathrm{dS}=\mathrm{d}_{\mathrm{e}} \mathrm{S}+\mathrm{d}_{\mathrm{i}} \mathrm{S}$
In all cases $\mathrm{d}_{\mathrm{e}} \mathrm{S}=\delta \mathrm{q} / \mathrm{T}$ and this can be easily measured but we can say only that $\mathrm{d}_{\mathrm{i}} \mathrm{S} \geq$ 0 . For reversible changes $\mathrm{d}_{\mathrm{i}} \mathrm{S}=0$ and for irreversible (natural, spontaneous) changes $\mathrm{d}_{\mathrm{i}} \mathrm{S}$ $>0$. So for a change carried out reversibly we have $\mathrm{dS}=\delta \mathrm{q}_{\mathrm{rev}} / \mathrm{T}$.

In an isolated system where $d_{e} S=0, d S=d_{i} S$. Because for a spontaneous change $d_{i} S$ $>0$ in an isolated system $\mathrm{dS}>0$.

This is the basis of the well-known statement of the Second Law:
In an isolated system only those changes are possible that result in an increase in the entropy of the system

We will begin by considering something that we know to be a spontaneous process - the intermixing of two perfect gases. To calculate the entropy change we need to invent a reversible path. In this case the direction is opposite to that of the mixing - but because entropy is a state function we will simply need at the end to change the sign of the value calculated.

Next we will go through the Carnot cycle with a view to showing that entropy is a State function. Note that we will be making use of parts of what we discussed earlier, namely isothermal and adiabatic expansions/compressions of perfect gases, in considering this hypothetical heat engine.

We will then introduce the Free Energy Functions and show why the names 'Free' or 'Available' energy are appropriate. The most important of these for chemistry is the Gibbs Free Energy, G.

## TO CALCULATE THE CHANGE IN ENTROPY FOR THE INTERMIXING

OF TWO PERFECT GASES

| $\mathrm{V} / 2$ | $\mathrm{~V} / 2$ |  |
| :--- | :--- | :--- |
| T | $\mathrm{n}_{\mathrm{H}_{2}}$ | T |
| P | $\mathrm{n}_{\mathrm{N}_{2}}$ |  |
| P | P |  |

$$
\Delta \mathrm{S}=\mathrm{S}_{\mathrm{f}-\mathrm{Si}} \mathrm{Si}
$$

so that
$\begin{aligned} & \Delta \mathrm{S}=\quad \Delta_{\mathrm{e}} \mathrm{S}+\Delta_{\mathrm{i}} \mathrm{S} \\ & \Delta_{\mathrm{e}} \mathrm{S}=\mathrm{O}\end{aligned}$
$\begin{aligned} & \Delta \mathrm{S}=\quad \Delta_{\mathrm{e}} \mathrm{S}+\Delta_{\mathrm{i}} \mathrm{S} \\ & \Delta_{\mathrm{e}} \mathrm{S}=\mathrm{O}\end{aligned}$

which is $\quad>\mathrm{O}$ for a spontaneous change

To calculate $\Delta \mathrm{S}$ we will unmix the gases reversibly - because S is a state function $\Delta \mathrm{S}_{\text {rev }}=\Delta \mathrm{S}_{\text {irrev }}$ but we can only evaluate $\Delta \mathrm{S}$ in a reversible process.


T , the initial temperature of the gases is unchanged.

$$
\mathrm{S} \quad=\Delta_{\mathrm{e}} \mathrm{~S}+\Delta_{\mathrm{i}} \mathrm{~S}, \quad \text { Reversible process } \Delta_{\mathrm{i}} \mathrm{~S}=\mathrm{O}
$$

Therefore $\quad \Delta \mathrm{S} \quad={ }^{\mathrm{q}_{\text {rev }}} / \mathrm{T} \quad ; \quad \mathrm{q}=\mathrm{qH}_{2}+\mathrm{qN}_{2}$
First Law: $\quad \Delta \mathrm{U} \quad=\mathrm{q}-\mathrm{w}$

$$
=\mathrm{qH}_{2}+\mathrm{qN}_{2}-\mathrm{wH}_{2}-\mathrm{wN}_{2}
$$

But $\Delta \mathrm{U}=\mathrm{O}$ for isothermal reversible expansion/contraction ideal gas

$$
\text { so that } \mathrm{qH}_{2}+\mathrm{qN}_{2}=\mathrm{wH}_{2}+\mathrm{wN}_{2}
$$

And we can calculate these two work quantities immediately

$$
\begin{aligned}
& \mathrm{W}_{\mathrm{H} 2}=\mathrm{n}_{\mathrm{H} 2} \mathrm{RT} \ln (\mathrm{~V} / 2) / \mathrm{V} \\
& \mathrm{~W}_{\mathrm{N} 2}=-\mathrm{n}_{\mathrm{H} 2} \mathrm{R} \ln 2 \\
& \mathrm{n}_{\mathrm{N} 2} \mathrm{R} \ln (\mathrm{~V} / \mathrm{V} / 2) / \mathrm{V}=-\mathrm{n}_{\mathrm{N} 2} \mathrm{R} \ln 2
\end{aligned}
$$

$$
\text { so that } \mathrm{W}_{\mathrm{H} 2}+\mathrm{W}_{\mathrm{N} 2}=-\left(\mathrm{n}_{\mathrm{H} 2}+\mathrm{n}_{\mathrm{N} 2}\right) \mathrm{RT} \ln 2
$$

Therefore $\quad \Delta \mathrm{S}_{\mathrm{rev}}={ }^{\text {qrev }} / \mathrm{T}=-\left(\mathrm{n}_{\mathrm{H} 2}+\mathrm{n}_{\mathrm{N} 2}\right) \mathrm{R} \ln 2$
Note that this is clearly negative
But this is for the "unmixing" so that for the initial mixing (irreversible, spontaneous) reaction

$$
\Delta \mathrm{S}_{\mathrm{irrev}}=-\Delta \mathrm{S}_{\mathrm{rev}}=\left(\mathrm{n}_{\mathrm{H} 2}+\mathrm{n}_{\mathrm{N} 2}\right) \mathrm{RT} \ln 2
$$

And this is clearly positive i. e., mixing would therefore be spontaneous with $\Delta \mathrm{S}>0$

The entropy change associated with a phase change, e.g., melting, evaporation, is

$$
\Delta \mathrm{S}_{\text {transformation }}=\frac{\Delta \mathrm{H}_{\text {transformation }}}{T_{\text {transformation }}}
$$

$\Delta \mathrm{H}$ is the enthalpy and T the temperature of the transformation.

The entropy change associated with heating is

$$
\Delta \mathrm{S}=\quad \stackrel{T_{2}}{T_{1}} \int \frac{C_{p}}{T} d T
$$

Problem

$$
\mathrm{H}_{2} \mathrm{O}(1,263 \mathrm{~K}) \rightarrow \mathrm{H}_{2} \mathrm{O}(\mathrm{~s}, 263 \mathrm{~K})
$$

Will this change occur spontaneously in an isolated system?

$$
\begin{array}{lll} 
& \begin{array}{l}
\underline{\mathrm{C}_{\mathrm{p}}\left(\mathrm{H}_{2} \mathrm{O}, \mathrm{~s}\right)} \\
\text { Therefore } \quad \\
\underline{\mathrm{C} p}\left(\mathrm{H}_{2} \mathrm{O}, \mathrm{l}\right) \\
\Delta \mathrm{H}_{\mathrm{f}}\left(\mathrm{H}_{2} \mathrm{O}\right)
\end{array} & =34.57 \mathrm{~J} \mathrm{~K}^{-1} \mathrm{~mol}^{-1} \\
& & 71.48 \mathrm{~J} \mathrm{~K}^{-1} \mathrm{~mol}^{-1} \\
& & \left(\Delta \mathrm{H}_{\mathrm{f}} \equiv \text { Enthalpy of fusion }\right)
\end{array}
$$

## THE CARNOT CYCLE



|  |  |  | WORK DONE |
| :--- | :--- | :--- | :--- |
| HEAT ABSORBED |  |  |  |
| Isothermal curve AB and <br> reversible in reservoir $\mathrm{T}_{2}$ | Step I | $\mathrm{RT}_{2} \ln \mathrm{~V}_{\mathrm{b}} / \mathrm{V}_{\mathrm{a}}$ | $\mathrm{RT}_{2} \ln \mathrm{~V}_{\mathrm{b}} / \mathrm{V}_{\mathrm{a}}$ |
| Reversible, adiabatic <br> expansion -temperature falls <br> to that of lower reservoir | Step II | $\mathrm{C}_{\mathrm{v}}\left(\mathrm{T}_{2}-\mathrm{T}_{1}\right)$ | 0 |
| At reservoir at $\mathrm{T}_{1}$-isothermal <br> reversible compression | Step III | $\mathrm{RT}_{1} \ln \mathrm{~V}_{\mathrm{d}} / \mathrm{V}_{\mathrm{c}}$ | $\mathrm{RT}_{2} \ln \mathrm{~V}_{\mathrm{d}} / \mathrm{V}_{\mathrm{c}}$ |
| Reversible adiabatic <br> compression -temperature <br> rises $\mathrm{T}_{1} \rightarrow$ Step IV <br> original state | $\mathrm{T}_{2}\left(\mathrm{~T}_{1}-\mathrm{T}_{2}\right)$ | 0 |  |

Total work done is sum of four terms but $\mathrm{W}_{\mathrm{II}}=-\mathrm{W}_{\text {IV }}$ so that

$$
\mathrm{W}_{\text {total }}=\mathrm{W}_{\mathrm{I}}+\mathrm{W}_{\mathrm{III}}=\mathrm{RT}_{2} \ln \mathrm{~V}_{\mathrm{b}} / \mathrm{V}_{\mathrm{a}}+\mathrm{RT}_{1} \ln \mathrm{~V}_{\mathrm{d}} / \mathrm{V}_{\mathrm{c}} .
$$

But now A and D lie on an adiabatic curve as do B and C .
Therefore $\left(\frac{\mathrm{V}_{\mathrm{d}}}{\mathrm{V}_{\mathrm{a}}}\right)^{\gamma-1}=\mathrm{T}_{2} / \mathrm{T}_{1}$ and $\left(\frac{\mathrm{V}_{\mathrm{c}}}{\mathrm{V}_{\mathrm{b}}}\right)^{\gamma-1}=\mathrm{T}_{2} / \mathrm{T}_{1}$
So that $V_{d} / V_{a}=V_{c} / V_{b}$ or $V_{b} / V_{a}=V_{c} / V_{d}$
Therefore $\mathrm{W}_{\text {total }}=\mathrm{RT}_{2} \ln \mathrm{~V}_{\mathrm{b}} / \mathrm{V}_{\mathrm{a}}-\mathrm{RT}_{1} \ln \mathrm{~V}_{\mathrm{b}} / \mathrm{V}_{\mathrm{a}}=\mathrm{R}\left(\mathrm{T}_{2}-\mathrm{T}_{1}\right) \ln \mathrm{V}_{\mathrm{b}} / \mathrm{V}_{\mathrm{a}}$

Now by definition the efficiency of a heat engine is equal to the ratio of the total work done, $\mathrm{W}_{\text {total }}$, in the cycle to the heat, $\mathrm{Q}_{2}$, taken in the higher temperature so that the efficiency of the hypothetical CARNOT ENGINE $\frac{\mathrm{W}_{\text {total }}}{\mathrm{Q}_{2}}=\frac{\mathrm{T}_{2}-\mathrm{T}_{1}}{\mathrm{~T}_{2}}$.

Note that the lower the temperature of the sink, the greater will be the efficiency absolute zero impossible at which the efficiency would be unity. Similarly for a given temperature of the sink the efficiency will be increased by using a higher temperature source.

Entropy Change From the first law $\Delta \mathrm{U}=0$ for the cycle

$$
\mathrm{Q}_{\text {total }}-\mathrm{W}_{\text {total }}=0
$$

$\mathrm{W}_{\text {total }}$ has been evaluated: Steps II and IV are adiabatic so that $\mathrm{Q}_{\text {total }}$ is given by the sum of $Q_{2}$ and $Q_{1}$ absorbed at $T_{2}$ and $T_{1}$.

$$
\begin{aligned}
& \mathrm{W}_{\text {total }}=\mathrm{Q}_{\text {total }}=\mathrm{Q}_{2}+\mathrm{Q}_{1} \equiv \mathrm{~W} \\
& \frac{\mathrm{~W}}{\mathrm{Q}_{2}}=\frac{\mathrm{Q}_{2}+\mathrm{Q}_{1}}{\mathrm{Q}_{2}}=\frac{\mathrm{T}_{2}-\mathrm{T}_{1}}{\mathrm{~T}_{2}} \\
& \text { therefore } \quad \mathrm{Q}_{2}+\mathrm{Q}_{1}=\mathrm{Q}_{2}-\mathrm{T}_{1} / \mathrm{T}_{2}\left(\mathrm{Q}_{2}\right) \\
& \text { therefore } \quad \mathrm{Q}_{1} / \mathrm{T}_{1}=-\mathrm{Q}_{2} / \mathrm{T}_{2} \text { or } \mathrm{Q}_{1} / \mathrm{T}_{1}+\mathrm{Q}_{2} / \mathrm{T}_{2}=0 \text { or } \Sigma \mathrm{Q} / \mathrm{T}=0
\end{aligned}
$$

for an infinitely small change the steps may be replaced by the integral

$$
\int \frac{\delta \mathrm{Q}}{\mathrm{~T}}=0 \quad \text { so that } \oint \mathrm{ds}=0
$$

THIS SHOWS THAT ENTROPY IS A STATE FUNCTION

## FREE ENERGY FUNCTIONS

| Available Energy | Free Energy |
| :---: | :---: |
| (Helmholtz Free Energy) | (Gibbs Free Energy) |
| F = U - TS | $\mathrm{G}=\mathrm{H}-\mathrm{TS}$ |
| Also known as the Work Function, F, but <br> not so useful in chemical systems | We will deal almost exclusively with G <br> because it suits conditions of constant T <br> and P |

Both are obviously state functions but apart from the definitions what are these functions?
THE HELMHOLTZ FREE ENERGY FUNCTION, F
$\mathrm{F}=\mathrm{U}-\mathrm{TS}$ so that for an infinitesimal change
$\mathrm{dF}=\mathrm{dU}-\mathrm{TdS}-\mathrm{SdT}$ If we assume constant temperature, then $\mathrm{dT}=0$ and $\mathrm{dF}=\mathrm{dU}-\mathrm{TdS}$
also $d U=\delta q-\delta w \quad$ so that $\quad d F=\delta q-\delta w-T d S$
and $\mathrm{dS}=\mathrm{d}_{\mathrm{e}} \mathrm{S}+\mathrm{d}_{\mathrm{i}} \mathrm{S}={ }^{\delta \mathrm{q}} / \mathrm{T}+\mathrm{d}_{\mathrm{i}} \mathrm{S}$ so that
$\delta q=T d S-\operatorname{Td}_{i} S$

Substitution gives

$$
\begin{aligned}
\mathrm{dF}= & \mathrm{TdS}-\mathrm{Td}_{\mathrm{i}} \mathrm{~S}-\delta \mathrm{W}-\mathrm{TdS} \\
& \text { so that } \quad \mathrm{dF}=-\delta \mathrm{W}-\mathrm{Td}_{\mathrm{i}} \mathrm{~S}
\end{aligned}
$$

for a reversible change $\quad d_{i} S=O$ therefore $\mathrm{Td}_{\mathrm{i}} \mathrm{S}=\mathrm{O}$ and $\mathrm{dF}_{\text {rev }}=-\delta \mathrm{W}_{\text {rev }}$
for an irreversible change $\quad \mathrm{d}_{\mathrm{i}} \mathrm{S}>\mathrm{O}$ therefore $\mathrm{Td}_{\mathrm{i}} \mathrm{S}>\mathrm{O}$

$$
\mathrm{dF}_{\text {irrev }}<-\delta \mathrm{W}_{\text {irrev }}
$$

Reminder: $\quad \mathrm{F}$ is a state function so that $\mathbf{d F}_{\text {rev }}=\mathbf{d F}$ irrev

So that $\quad-\delta \mathrm{W}_{\text {rev }}<-\delta \mathrm{W}_{\text {irrev }}$

## Reminder: $\quad W$ is the work done by the system; - $W$ is work done on the system

So for a given change of state the maximum obtainable work (work that can be done on the surroundings) is the reversible work. This is the same for all reversible paths and is -dF .

## This is the origin of terms "available" or "free energies"

## THE GIBBS FREE ENERGY FUNCTION, G

Follow a similar sequence to show

$$
\begin{array}{ll}
\mathrm{dG}_{\text {rev }}=-\delta \mathrm{W}^{\prime} & \text { at constant } T \text { and } P \text { with } \\
\mathrm{dG}_{\text {irrev }}=-\delta \mathrm{W}^{\prime} & \delta \mathrm{W}^{\prime} \equiv \text { work other than PdV work }
\end{array}
$$

if $\mathrm{W}^{\prime}$ be taken as zero i.e., no work other than "pressure volume" work then
$\mathrm{dG}=0 \quad$ System at equilibrium
dG $<0$ process has a tendency to proceed spontaneously
$\mathrm{dG}>0$ process will tend to be spontaneous in the opposite direction.

## THE THIRD LAW OF THERMODYNAMICS

The interest here lies in the determination of values of $\Delta \mathbf{G}$ from purely calorimetric (that is the determination of heat changes) measurements. Enthalpy changes can be determined in this way using a calorimeter as you have done in the laboratory (thermochemistry) and it turns out that the entropy values for a substance can also be determined calorimetrically if we can say something about the value of that entropy when the substance is at the absolute zero of temperature. Historically this objective (to obtain Gibbs Free Energy values from calorimetric measurements) was approached incrementally over a period of years as our knowledge of thermodynamics increased and some of these efforts will be described in the lecture.

The following statement of the Third Law made by Lewis and Randall in 1923 is the one that we will use because it is of most relevance in chemistry:

If the entropy of each element in some crystalline state be taken as zero at the absolute zero of temperature, every substance has a finite positive entropy; but at the absolute zero of temperature the entropy may become zero and does so become in the case of perfectly crystalline substances.

## THIRD LAW ENTROPIES

This provides the basis for what are called 'third law', 'calorimetric', 'practical', 'conventional' and even 'absolute' entropies. The statement will also be very helpful for our understanding of something called residual entropy, which occurs in a number of substances that retain some entropy (i.e., disorder) even when they approach the absolute zero of temperature.

The value of the third law entropy of a substance at any temperature is therefore determined by measuring the heat changes as the substance is heated up from or cooled down to the absolute zero of temperature to the temperature in question. These processes can be carried out, at least in our minds, reversibly and so

$$
\Delta \mathrm{S}=\mathrm{q}_{\mathrm{rev}} / \mathrm{T}
$$

can be evaluated for each step in the process. The series of steps traversed may entail changes in phase and the heating of each of the phases as we progress from absolute zero, where all substances are solids, to the gas phase. Because we cannot attain the absolute zero of temperature an extrapolation procedure must be used at the lowest temperatures. Such a determination of Third Law entropy will be illustrated by considering the data for chlorine gas. We will also use calorimetric data measured on the allotropes of sulphur, monoclinic and rhombohedral, to verify the Third Law.

## RESIDUAL ENTROPY

Finally we will consider the phenomenon of residual entropy more closely using two quite different examples. The first of these is carbon monoxide in which the molecules are not packed into a perfect crystal as absolute zero is approached. The second is hydrogen in which the phenomenon is due to the existence of two forms, ortho- and para-, which without a catalyst fail to attain their equilibrium mixture proportions as the substance is cooled.

## ENTROPIES AT TEMPERATURES OTHER THAN ABSOLUTE ZERO

The Third Law opens the way for the determination, using calorimetric measurements, of entropies at temperatures other than zero Kelvin. By combining these with enthalpy data we can therefore determine values of $\Delta \mathrm{G}$ - and hence predict the position of equilibrium - from purely calorimetric measurements. The value of the entropy of a substance at a temperature T Kelvin, denoted by $\mathrm{S}_{\mathrm{TK}}$, is related to its value at zero Kelvin, $\mathrm{S}_{0 \mathrm{~K}}$, by


There will be at least one term
for each phase: solid, liquid and gas

$$
\frac{\Delta H_{\text {transformation }}}{T_{\text {transformation }}} \text { for each transformation }
$$

See later the example for Chlorine gas where each of theses terms is dealt with and evaluated in detail. There is a low temperature extrapolation term, a term for heating the solid, a term for the fusion, a term for heating the liquid, a term for the vaporisation and finally a term for heating the gas. There is also a correction term for the ideal gas,

CALCULATIONS FOR CHLORINE GAS
W.F. Giauque and F.M. Powell, J.A.C.S., 61, (1939), 1970

| Temp. Range orTransition Temperature (K) | Type of calculation/measurement | $\begin{aligned} & \text { Entropy mole }{ }^{-1} \\ & \left(\text { cal } \mathbf{K}^{-1}\right)^{*} \end{aligned}$ |
| :---: | :---: | :---: |
| 0-15 | From Debye function ( $0=115$ ) Graphical from $\mathrm{C}_{\mathrm{p}}$ for solid Fusion: $\Delta \mathrm{H}_{\text {fus }}=1531 \mathrm{cal} \mathrm{mole}^{-1}$ Graphical from $\mathrm{C}_{\mathrm{p}}$ for liquid <br> Vaporisation: $\Delta \mathrm{H}_{\text {vap }}=4878 \mathrm{cal} \mathrm{mole}^{-1}$ | 0.331 |
| 15-172.12 |  | 16.573 |
| 172.12 |  | 8.895 |
| 172.12-239.05 |  | 5.231 |
| 239.05 |  | 20.406 |
|  | Entropy of actual gas at boiling point | 51.44 |
|  | Correction for gas imperfection | 0.12 |
|  | Entropy ideal gas at boiling point | 51.56 |
|  | (*1 cal = 4.184 Joule) |  |

This is experimentally measured third law entropy.

## EXPERIMENTAL VERIFICATION OF THE THIRD LAW

This is a relatively simple verification involving the forms of sulphur - monoclinic and rhombic. Here the transition temperature from one form to the other is 368.5 K with $\Delta \mathrm{H}=$ $-96.0 \mathrm{cal} \mathrm{mol}^{-1}$. At this temperature the two forms are in equilibrium but it is possible to obtain monoclinic sulphur stable below its transition temperature. This can then be taken down as near as possible to absolute zero - the necessary calorimetric data can be taken on both forms.

## Experimentally

$$
\begin{aligned}
& \mathrm{S}_{368.5 \mathrm{~K}}^{\text {rhombic }}=\mathrm{S}_{\mathrm{OK}}^{\mathrm{R}}+\int_{\mathrm{O}}^{368.5} \frac{\mathrm{C}_{\mathrm{p}}^{\mathrm{R}}}{\mathrm{~T}} \mathrm{dT}=\mathrm{S}_{\mathrm{OK}}^{\mathrm{R}}+8.81 \\
& \mathrm{~S}_{368.5 \mathrm{~K}}^{\text {monoclinic }}=\mathrm{S}_{\mathrm{OK}}^{\mathrm{M}}+\int_{\mathrm{O}}^{368.5} \frac{\mathrm{C}_{\mathrm{p}}^{\mathrm{M}}}{\mathrm{~T}} \mathrm{dT}=\mathrm{S}_{\mathrm{OK}}^{\mathrm{M}}+9.04
\end{aligned}
$$

so that $\quad \underset{368.5 \mathrm{~K}}{\mathrm{R}}-\mathrm{S}_{368.5 \mathrm{~K}}^{\mathrm{M}}=\mathrm{S}_{\mathrm{OK}}^{\mathrm{R}}-\mathrm{S}_{\mathrm{OK}}^{\mathrm{M}}-0.23$
$\Delta \mathrm{H}$ for the transition $=-96.0 \mathrm{cal} \mathrm{mol}^{-1}$
therefore

$$
\mathrm{S}_{368.5}^{\mathrm{R}}-\mathrm{S}_{368.5}^{\mathrm{M}}=-96.0 / 368.5-0.261 \mathrm{cal} \mathrm{~mol}^{-1} \mathrm{~K}^{-1}
$$

so that $\quad \mathrm{S}_{\mathrm{OK}}^{\mathrm{R}}-\mathrm{S}_{\mathrm{OK}}^{\mathrm{M}}=-0.031 \mathrm{cal} \mathrm{mol}^{-1} \mathrm{~K}^{-1}$

This may be taken as zero within the limits of the experimental errors involved.
More accurate data are available for the system white-tin grey tin.

## RESIDUAL ENTROPY

For gases standard entropies can be calculated from statistical theories and spectroscopic data which give the energies in the various quantum states. To do this use the SAKUR TETRODE equation:

For a monatomic gas $\mathrm{S}_{\mathrm{T}}=3 / 2 \mathrm{R} \ln \mathrm{M}+5 / 2 \mathrm{R} \ln \mathrm{T}-\mathrm{R} \ln \mathrm{P}-2.314$

$$
\mathrm{S}_{\mathrm{T}=298.15}^{\mathrm{O}}=3 / 2 \mathrm{RlnM}+108.7 \mathrm{JK}^{-1} \mathrm{~mol}^{-1}
$$

Polyatomic gases would have the above terms plus terms for vibrational and rotational entropies.

The table below compares the values determined as above (labelled Spectroscopic) with experimental Third Law values determined using the method illustrated previously for Chlorine gas.

| Substance | ${ }^{\text {s}}$ Spectroscopic | ${ }^{\mathrm{s}}$ Third Law |
| :---: | :---: | :---: |
| $\mathrm{N}_{2}$ | 191.45 | 191.95 |
| $\mathrm{O}_{2}$ | 205.04 | 205.33 |
| $\mathrm{H}_{2} \mathrm{~S}$ | 205.34 | 205.54 |
| $\mathrm{CO}_{2}$ | 213.57 | 213.74 |
| $\mathrm{C}_{2} \mathrm{~N}_{4}$ | 219.43 | 219.47 |
| $\mathrm{H}_{2}$ | 130.60 | 124.37 |
| CO | 197.85 | 193.21 |

The values in the table are for ideal gas state at $298.15 \mathrm{~K} \mathrm{in} \mathrm{J} \mathrm{K}^{-1} \mathrm{~mol}^{-1}$
The experimental Third Law values in the final column for $\mathrm{H}_{2}$ and CO are lower because the assumption that the entropy is zero at 0.0 K is not correct for these substances - the crystals contain residual entropy. Incidentally the agreement between the values determined by the two methods for the other substances shows the correctness of the Third Law.

## Carbon Monoxide CO

$\mathrm{S}=\mathrm{R} \ln \Omega$ which in a completely random arrangement in the crystal is

$$
\begin{aligned}
\mathrm{R} \ln 2 & =8.3144 \times 0.6931 \\
& =5.763 \mathrm{JK}^{-1} \mathrm{~mol}^{-1} \text { or } 1.378 \mathrm{cal}^{-1} \mathrm{~mol}^{-1}
\end{aligned}
$$

From the table $\Delta=4.64$ which implies that the orientation is not fully random. Good discussion of this in Chemical Thermodynamics by D.J.G.Ives. Note also the residual entropy of ice due to hydrogen bonding.

## Ortho- and para-hydrogen

Rotational lines in far UV spectrum show 3:1 ratio in intensity which is consistent with the restriction of transitions to those between rotational states of even $\mathrm{J}=0,2,4 \ldots$ (Symmetrical wave functions) or between odd states $\mathrm{J}=1,3,5 \ldots$ (antisymmetrical wave functions). Latter have three times the statistical weight of the former - two kinds of $\mathrm{H}_{2}$ molecules present - proton spin $\mathrm{i}=1 / 2($ in units of $\mathrm{h} / 2 \pi)$.

Symmetrical parallel spins - resultant spin of 1 so we have $-1,0,+1$ with $(2 i+1)=3$ This is ORTHO

Antisymmetrical (opposed) have a resultant of 0 so that $(2 i+1)=1$ i.e., single weight This is PARA

Normal hydrogen gas at room temperature is composed of 3 parts of ortho and 1 part of para hydrogen. These components separately give rise to rotational spectrum lines.

As the temperature falls the equilibrium ortho to para ratio decreases so that as absolute zero is approached all of the ortho hydrogen present would be converted to para. The pure para hydrogen can go to $\mathrm{J}=0$ and so get rid of its rotational energy - ortho hydrogen, in contrast, cannot do this. See the diagram on the following page which illustrates this and shows how the residual entropy arises in hydrogen cooled in the absence of a catalyst that would convert ortho to para form. Under these circumstances the room temperature ratio ( $3: 1$ of ortho:para) forms is retained through the cooling process. Compare the areas under the curves in the diagram to see the residual entropy.


This diagram illustrates the heat capacities excluding translations for ortho, para, the equilibrium mixture and a mixture containing ortho to para in a 3:1 ratio taken from W.F. Giauque, JACS, 52 (1930) 4816.

Derived by combining: $\quad d U \quad=\delta q-\delta w ; \quad \delta w=-P d V ;$

$$
\begin{array}{ll}
\mathrm{H}=\mathrm{U}+\mathrm{PV} ; & \delta \mathrm{q}_{\mathrm{rev}}=\mathrm{TdS} ; \\
\mathrm{F}=\mathrm{U}-\mathrm{TS} ; & \mathrm{G}=\mathrm{H}-\mathrm{TS}
\end{array}
$$

1. $\mathbf{d U}=\delta \mathbf{q}-\delta \mathbf{w}$
$\underline{d U}=\mathbf{T d S}-\mathbf{P d V}$
2. $\mathbf{H}=\mathbf{U}+\mathbf{P V}$
$\mathbf{d H}=\mathbf{d U}+\mathbf{P d V}+\mathrm{VdP}$
$\mathrm{dH}=\mathrm{TdS}+\mathrm{VdP}$
$\underline{\mathrm{dH}}=\mathrm{TdS}+\mathrm{VdP}$
3. $\mathbf{F}=\mathbf{U}-\mathbf{T S}$
$\mathbf{d H}=\mathbf{d U}-\mathbf{T d S}-\mathbf{S d T}$
dF $=$ TdS - PdV - TdS - SdT
$\underline{\text { dF }}=\quad$-SdT $-\mathbf{P d V}$
4. $\mathbf{G}=\mathbf{H}-\mathbf{T S}$
$\mathbf{G}=\mathbf{U}+\mathbf{P V}-\mathbf{T S}$
dG $=\mathbf{d U}+\mathbf{P d V}+V d P-T d S-S d T$
$d G=T d S-P d V+P d V+V d P-T d S$ - SdT
$\underline{d G}=-\mathbf{S d T}+V d P$

## THE CHEMICAL POTENTIAL ( $\mu_{\mathrm{i}}$ )

We will now move on to consider open systems to which chemical species can be added or removed. This immediately creates the need to be able to express the effects of these changes in composition on the thermodynamic properties of the system. This is done using the concept of the chemical potential, which for a species i is given the symbol $\mu_{\mathrm{i}}$. In its most usual usage the chemical potential is considered to be the partial derivative of the Gibbs free energy function, $G$, with respect to the number of moles of the species $\mathrm{i}, \mathrm{n}_{\mathrm{i}}$, with the temperature, $T$, pressure, $P$, and the numbers of moles of all other substances $n_{j \neq i}$ being held constant. So it is the rate of change of $G$ with the number of moles of the component i that are added to or taken from the system.

$$
\mu_{\mathrm{i}}=\left(\partial \mathrm{g} / \partial \mathrm{n}_{\mathrm{i}}\right)_{\mathrm{T}, \mathrm{P}, \mathrm{n} \mathrm{j} \neq \mathrm{i}}
$$

We identify the intensity factors Temperature and Pressure with the driving forces for transfers of energy via heat and mechanical work, respectively. The chemical potential, $\mu_{\mathrm{i}}$, is also an intensity factor and is identified in an analogous way with the driving force for changes in chemical composition.

Thus the term 'potential' has the same meaning as we place on an electrical potential. This implies that if the chemical of a species in two adjacent phases has the same value then there will be no tendency for that species to move across the interface. On the other hand if the chemical potential of a species in one of the phases has a higher value than in the other then this will cause that species to move from the phase in which its chemical potential has the higher value. So just as temperature differences drive heat transfers and pressure differences give rise to mechanical changes, differences in chemical potentials drive changes in chemical composition. On reflection this is hardly surprising since we have identified the Gibbs free energy, G, as the criterion for the direction of chemical change with the tendency for $\Delta \mathrm{G}$ to become zero so that equilibrium can be achieved.

## THE CHEMICAL POTENTIAL AND EQUILIBRIA

We will in the following lectures first examine a number of heterogeneous equilibria between phases using the principle that the values of the chemical potentials of each species must be equal in these phases if no transfer of that chemical species is to occur between them i.e., if they are at equilibrium. In this way a formal derivation of the Gibbs Phase Rule

$$
\mathbf{F}=\mathbf{C}-\mathbf{P}+\mathbf{2}
$$

will be possible. The Clapeyron and Clausius-Clapeyron equations will also be derived. The latter

$$
\mathrm{d} \ln \mathrm{P} / \mathrm{dT}=\Delta \mathbf{H}_{\text {trans }} / \mathbf{R T}^{2}
$$

makes it possible to determine the heats of transformations from condensed to gaseous phases through a series of measurements of the vapour pressure of the condensed phase as the temperature is changed.

We will then consider homogeneous chemical equilibria to determine the well-known relationship between the standard free energy for a chemical reaction and its equilibrium constant, K. This leads naturally on to the Van't Hoff equation, which is a quantitative relationship between temperature and the value of the equilibrium constant for a chemical reaction

$$
\mathrm{d} \ln \mathrm{~K} / \mathrm{dT}=\Delta \mathrm{H}_{\mathrm{rxn}} / \mathrm{RT}^{2}
$$

The integrated form of the Van't Hoff equation is very much used because it can be utilised derive the enthalpy of reaction from two measurements of the equilibrium constant for the reaction made at temperatures that are reasonably close to each other.

The integrated form of this equation is:

$$
\ln \left(K_{1} / K_{2}\right)=-\left(\Delta H_{r x n} / \mathbf{R}\right)\left(1 / \mathbf{T}_{1}-1 / \mathbf{T}_{2}\right)
$$

where $\mathrm{K}_{1}$ and $\mathrm{K}_{2}$ are the equilibrium constants measured at the Kelvin temperatures $\mathrm{T}_{1}$ and $\mathrm{T}_{2}$, respectively, R is the gas constant and $\Delta \mathrm{H}_{\mathrm{rxn}}$ is the enthalpy change in the reaction assumed to be constant over the temperature range examined. There are five potential unknowns ( $\Delta \mathrm{H}_{\mathrm{rxn}}, \mathrm{T}_{1}, \mathrm{~T}_{2}, \mathrm{~K}_{1}$ and $\left.\mathrm{K}_{2}\right)$ in this equation so that if any four of them are known the fifth can be calculated. Note that the measurements of $K$ should be made at temperatures that are reasonably close to each other to allow the assumption to be made that $\Delta \mathrm{H}_{\mathrm{rxn}}$ is not a function of temperature (cf. the Kirchoff equation as derived earlier).

## THE CHEMICAL POTENTIAL OF A SPECIES $\mathbf{i}$ - ( $\left.\mu_{i}\right)$

The chemical potential describes the contribution of a particular species in a manycomponent system. It is defined via the properties of single valued functions of many variables.

$$
\mathrm{U}=\mathrm{f}\left(\mathrm{~V}, \mathrm{~S}, \mathrm{n}_{1}, \mathrm{n}_{2} \mathrm{n}_{3}, \ldots\right) \quad \mathrm{n}_{\mathrm{i}}=\text { number of moles of species } \mathrm{i}
$$

for small changes in V,S, $\mathrm{n}_{\mathrm{i}}$

$$
d U=\left(\frac{\partial U}{\partial V}\right)_{S, n} d V+\left(\frac{\partial U}{\partial S}\right)_{V, n} d s+\sum^{i}\left(\frac{\partial U}{\partial n_{i}}\right)_{V, S, n_{j}, j i}
$$

In a one component system all $\mathrm{dn}=\mathrm{O}$

$$
\begin{aligned}
& \mathrm{dU}=\mathrm{q}-\mathrm{w}=\mathrm{TdS}-\mathrm{PdV} \\
& \left(\frac{\partial \mathrm{U}}{\partial \mathrm{~V}}\right)_{\mathrm{S}, \mathrm{n}}=-P \text { and }\left(\frac{\partial \mathrm{U}}{\partial \mathrm{~S}}\right)_{\mathrm{V}, \mathrm{n}}=\mathrm{T} \quad \begin{array}{r}
\text { Intensity } \\
\text { Factors }
\end{array}
\end{aligned}
$$

for a open system we identify $\left(\frac{\partial \mathrm{U}}{\partial \mathrm{n}_{\mathrm{i}}}\right)$ with a chemical intensity factor $\mu_{\mathrm{i}}$ - CHEMICAL POTENTIAL

$$
\mathrm{dU}=\mathrm{TdS}-\mathrm{PdV}+\mu_{\mathrm{i}} \mathrm{dn}_{\mathrm{i}}
$$

or more generally

$$
\mu_{\mathrm{i}}=\left(\frac{\partial \mathrm{U}}{\partial \mathrm{n}_{\mathrm{i}}}\right)_{\mathrm{S}, \mathrm{v}, \mathrm{n}_{\mathrm{j} \neq \mathrm{i}}}=\left(\frac{\partial \mathrm{H}}{\partial \mathrm{n}_{\mathrm{i}}}\right)_{\mathrm{S}, \mathrm{P}, \mathrm{n}_{\mathrm{j} \neq \mathrm{i}}}=\left(\frac{\partial \mathrm{F}}{\partial \mathrm{n}_{\mathrm{i}}}\right)_{\mathrm{T}, \mathrm{~V}, \mathrm{n}_{\mathrm{j} \neq \mathrm{i}}}=\left(\frac{\partial \mathrm{G}}{\partial \mathrm{n}_{\mathrm{i}}}\right)_{\mathrm{T}, \mathrm{P}, \mathrm{n}}^{\mathrm{j} \neq \mathrm{i}}
$$

most usual usage is partial molar Gibbs Free Energy

$$
\mu_{\mathrm{i}}=\left(\partial G / \partial n_{i}\right)_{\mathrm{T}, \mathrm{P}, \mathrm{n}}{ }_{\mathrm{j} \neq \mathrm{i}}
$$

## HETEROGENEOUS EQUILIBRIA - BETWEEN TWO PHASES

Thermal Equilibrium
no net transfer of heat any small transfers reversible condition $\mathrm{dS}=\mathrm{O}$

| $\alpha$ | $\beta$ |
| :--- | :--- |

i.e., for any small flow dq from $\alpha \rightarrow \beta$
$d S^{\alpha}+d S^{\beta}$ must equal zero
$-d q / T^{\alpha}+d q / T^{\beta}=O$

$$
\therefore \mathrm{T}^{\alpha}=\mathrm{T}^{\beta}
$$

(if $\mathrm{T}^{\alpha}>\mathrm{T}^{\beta}$ then heat flows irreversibly $\alpha \rightarrow \beta$ )

Mechanical (Volume) Equilibrium at constant T and $\mathrm{V} ; \mathrm{dF}=0$
i.e. for any small expansion dV in $\alpha$, corresponding -d V in $\beta$

$$
\begin{aligned}
& \mathrm{dF}^{\alpha}+\mathrm{dF}^{\beta}=\mathrm{O} \\
& -\mathrm{P}^{\alpha} \mathrm{dV}+\mathrm{P}^{\beta} \mathrm{dV}=\mathrm{O}
\end{aligned} \quad \therefore \mathrm{P}^{\alpha}=\mathrm{P}^{\beta}
$$

## Chemical Equilibrium

 at given T and $\mathrm{P} ; \mathrm{dG}=\mathrm{O}$i.e. for any small transfer $\mathrm{dn}_{\mathrm{i}}$ moles of species i

$$
\begin{aligned}
& \mathrm{dG}^{\alpha}+\mathrm{dG}^{\beta}=\mathrm{O} \\
& \mu_{\mathrm{i}}^{\alpha}\left(-\mathrm{dn}_{\mathrm{i}}\right)+\mu_{\mathrm{i}}^{\beta}\left(\mathrm{dn}_{\mathrm{i}}\right)=\mathrm{O} \quad \mu_{\mathrm{i}}^{\alpha}=\mu_{\mathrm{i}}^{\beta}
\end{aligned}
$$

Saturated Solution
Boiling Point
Distribution

$$
\begin{array}{lll}
\mu_{\mathrm{i}}(\text { solution }) & = & \mu_{\mathrm{i}} \text { (crystal) } \\
\mu_{\mathrm{i}} \text { (liquid) } & = & \mu_{\mathrm{i}}(\text { vapour }) \\
\mu_{\mathrm{I}}\left(\mathrm{H}_{2} \mathrm{O}\right) & = & \mu_{\mathrm{I}}\left(\mathrm{CCl}_{4}\right) \text { etc } \ldots
\end{array}
$$

P Number of Phases:

C Number of components:

## $F$ variance or number of Degrees of Freedom

A phase is homogeneous, physically distinct and mechanically separable part of the system. Each phase must therefore be separated from other phases by a physical boundary e.g.
(i) any number of gases-mix to give 1 phase
(ii) saturated solution; solution, undissolved solid and vapour 3 phases
(iii) $\mathrm{CaCO}_{3} \rightleftharpoons \mathrm{CaO}+\mathrm{CO}_{2}$ two different solids and gas 3 phases

Number of components of a system at equilibrium is the smallest number of independently variable constituents by means of which the composition of each phase present can be expressed either directly or in the form of a chemical equation. - Approach assumes a prior knowledge is available in form of description or chemical equation e.g.
(i) ice/water/water vapour 1 component
(ii) $\mathrm{CaCO}_{3}($ solid $) \rightleftharpoons \mathrm{CaO}($ solid $)+\mathrm{CO}_{2}$ (gas). All phases can be made from $\mathrm{CaO}, \mathrm{CO}_{2}$
2 components
The state of a system is completely defined when every intensive variable has been assigned some fixed value. The pressure, the temperature, the compositions of all the phases and all other properties are known. In order that such a state may be defined some minimum number of variables must be specified - number of degrees of freedom (variance).

## General Case:

Equilibrium with C distinct components in each of $P$ phases
To specify the state of each phase requires $\mathrm{P}, \mathrm{T}$ and (C-1)
i.e. $2+(\mathrm{C}-1)=(\mathrm{C}+1)$ variables
$\therefore$ Total number of variables $\mathrm{P}(\mathrm{C}+1)$

## Equations:

| $\mathrm{T}^{\alpha}=\mathrm{T}^{\mathrm{b}}=\mathrm{T}^{\gamma} \ldots \ldots \ldots$. | $(\mathrm{P}-1)$ equations |
| :--- | :--- |
| $\mathrm{P}^{\alpha}=\mathrm{P}^{\mathrm{b}}=\mathrm{P}^{\gamma} \ldots \ldots \ldots$. | (P-1) equations |
| $\mu_{1}{ }^{\alpha}=\mu_{1}{ }^{\mathrm{b}}=\mu_{1}{ }^{\gamma} \ldots \ldots$ | (P-1) equations |
| $\mu_{2}{ }^{\alpha}=\mu_{2}{ }^{\mathrm{b}}=\mu_{2}{ }^{\gamma} \ldots \ldots$. | (P-1) equations |
| - |  |
| - |  |
| $\mu_{c}{ }^{\alpha}=\mu_{\mathrm{c}}{ }^{\mathrm{b}}=\mu_{\mathrm{c}}{ }^{\gamma} \ldots \ldots \ldots .$. | (P-1) equations |

$\therefore$ Total number of equations $(\mathrm{C}+2)(\mathrm{P}-1)$
$\mathrm{F}=$ the number of variables not fixed is therefore

$$
=P(C+1)-(C+2)(P-1)
$$

Which gives

$$
\text { F = C }-\mathbf{P}+2 \text { Gibbs Phase Rule }
$$

## ONE COMPONENT - TWO PHASES

## (CLAPEYRON AND CLAUSIUS-CLAPEYRON EQUATIONS)



Heterogeneous equilibrium with one component in two phases. Along the line OBJ

$$
\mathrm{F}=\mathrm{C}-\mathrm{P}+2=1-2+2=1
$$

At fixed temperature the vapour pressure is fixed.

As the temperature varies, the vapour pressure also varies i.e., the vapour pressure. is $f(T)$

Apply equilibrium condition $-\mu$ must have same value in both phases $\mu^{\alpha}=\mu^{\beta}$
If T is altered by $\mathrm{dT}, \mathrm{P}$ shifts by dP and $\mu$ by $\mathrm{d} \mu$ so that

$$
\mathrm{d} \mu^{\alpha}=\mathrm{d} \mu^{\beta} \text { - so that equilibrium is maintained. }
$$

For a one-component system $\mu=\bar{G}$ i.e., it is the partial molar Gibbs Free energy.
For changes in dP and dT

$$
\begin{array}{ll} 
& \mathrm{V} \equiv \text { molar volume } \\
\mathrm{dG}=\mathrm{VdP}-\mathrm{SdT} & \mathrm{~S} \equiv \text { molar entropy }
\end{array}
$$

so that

$$
\mathrm{d} \mu^{\alpha}=\mathrm{V}^{\alpha} \mathrm{dP}-\mathrm{S}^{\alpha} \mathrm{dT}=\mathrm{d} \mu^{\beta}=\mathrm{V}^{\beta} \mathrm{dP}-\mathrm{S}^{\beta} \mathrm{dT}
$$

this gives

$$
\frac{d P}{d T}=\frac{S^{\alpha}-S^{\beta}}{V^{\alpha}-V^{\beta}}=\frac{\Delta S}{\Delta V}
$$

which is the difference in molar entropy of the phases divided by the difference in their molar volumes.

Interest lies in the value of this derivative, $\mathrm{dP} / \mathrm{dT}$, at a specified


T temperature and pressure.

For isothermal reversible (i.e., equilibrium) condition at constant pressure

$$
\begin{gathered}
\mathrm{S}^{\alpha}-\mathrm{S}^{\beta}=\Delta \mathrm{S}=\int \frac{\mathrm{dq} \mathrm{q}_{\mathrm{p}}}{\mathrm{~T}} \\
=\frac{1}{T} \int d q_{p}=\frac{\Delta \mathrm{H}}{\mathrm{~T}}
\end{gathered}
$$

So that

$$
d P / d T=\frac{\Delta H}{T \Delta V}
$$

CLAPEYRON EQTN.
\{ ANY TWO PHASES OF ONE COMPONENT \}

A particularly convenient case arises when we deal with a gas and a condensed (solid or liquid) phase.

Here $\quad\left(V^{\alpha}-V^{\beta}\right)=($ Vgas $-V$ condensed phase $) \cong$ Vgas
because Vgas $\gg$ V condensed phase
If we now assume that the gas is ideal then
Vgas $=R T / P$ so that

$$
\begin{aligned}
& d P / d T=\frac{\Delta H}{T(R T / P)}=P \Delta H / R T^{2} \\
& 1 / P d P / d T=\frac{d \ln P}{d T}=\Delta H / R T^{2}
\end{aligned}
$$

## CLAUSIUS-CLAPEYRON EQUATION

For many substances over not too long a temperature range $\Delta \mathrm{H}_{\text {transformation }}$ is essentially constant so that we can integrate the equation as follows

$$
\ln P_{1} / P_{2}=-\Delta H / R\left\{\frac{1}{T_{1}}-\frac{1}{T_{2}}\right\}
$$



> A series of vapour pressure measurements made at known temperatures can yield the enthalpy of the phase transformation.

What assumptions have been made in this derivation?

## HOMOGENEOUS CHEMICAL EQUILIBRIUM

General Chemical Equation

$$
\mathrm{aA}+\mathrm{bB} \rightleftharpoons \mathrm{cC}+\mathrm{dD} \rightleftharpoons \quad \mathrm{~K}_{\mathrm{p}}=\frac{\mathrm{p}_{\mathrm{C}}^{\mathrm{c}}}{\mathrm{p}_{\mathrm{A}}^{\mathrm{a}}} \mathrm{p}_{\mathrm{D}}^{\mathrm{d}}
$$

At constant temperature and pressure the condition for equilibrium is that G is constant so that for any small change, $\mathrm{dG}=\mathrm{O}$.

So far a small displacement of equilibrium -x moles left to right.
the mol of A that disappear
the mol of B that disappear
the mol of C that form the mol of D that form
$\mathrm{dn}_{\mathrm{A}}=-\mathrm{xa}$
$\mathrm{dn}_{\mathrm{B}}=-\mathrm{xb}$
$\mathrm{dn}_{\mathrm{C}}=\mathrm{xc}$
$\mathrm{dn}_{\mathrm{D}}=\mathrm{xd}$
the free energy change associated with each is

$$
\mathrm{dG}_{\mathrm{i}}=\mu_{\mathrm{i}} \mathrm{dn}_{\mathrm{i}}
$$

So that at equilibrium the values must satisfy

$$
\begin{aligned}
& -x a \mu_{A}-x b \mu_{B}+x c \mu_{C}+x d \mu_{D}=0 \\
& a \mu_{A}+b \mu_{B}=c \mu_{C}+d \mu_{D}
\end{aligned}
$$

At equilibrium $\mu \mathrm{i}$ of the components have values related by the same formal equation as the stiochiometric chemical equation.

This means that if we can express the chemical potentials of substances in terms of their pressure or concentration and T , we can find the condition for equilibrium. The way to do this in a variety of cases is set out below.

## CHEMICAL POTENTIAL OF A PERFECT GAS

This is expressed relative to its standard chemical potential in a standard or reference state. We need to formulate the free energy change involved (remember this is reversible work done) in moving from the reference to the state in question.

State at the given temperature but difficult pressure:

$$
\text { Work }=\int_{V^{\prime}}^{V^{\prime \prime}} P d V=\int_{V^{\prime}}^{V^{\prime \prime}} \frac{n R T}{V} d V=n R T \operatorname{In} \frac{V^{\prime \prime}}{V^{\prime}}
$$

Free Energy $\Delta \mathrm{G}=-\mathrm{w}=-\mathrm{nR} \ln \frac{V^{\prime \prime}}{V^{\prime}}=\mathrm{nRT} \ln \frac{P^{\prime \prime}}{P^{\prime}}$

$$
\Delta \mu=\frac{\frac{\partial \Delta G}{\partial n}}{\Delta}=\mathrm{RT} \ln P^{\prime \prime} / P^{\prime}
$$

For expansion from a standard state $P^{\prime}=1.0$ where $\mu=\mu^{0}$ to another at pressure $P$

$$
\mu(P)=\mu^{0}+R T \ln P
$$

Chemical Potential of a Perfect Gas

## HOMOGENEOUS REACTION OF PERFECT GASES

Substitute $\mu=\mu^{0}+R T \ln P$ for each gas into the equation for equilibrium

$$
\mathrm{a} \mu_{\mathrm{A}}+\mathrm{b} \mu_{\mathrm{B}}=\mathrm{c} \mu_{\mathrm{c}}+\mathrm{d} \mu_{\mathrm{D}}
$$

$\mathrm{a} \mu_{\mathrm{A}}{ }^{\mathrm{o}}+\mathrm{b} \mu_{\mathrm{B}}{ }^{\mathrm{o}}-\left(\mathrm{c} \mu_{\mathrm{C}}{ }^{\mathrm{o}}+\mathrm{d} \mu_{\mathrm{D}}{ }^{\mathrm{o}}\right)=\mathrm{R} \operatorname{Tl} \ln \frac{\mathrm{p}_{\mathrm{c}}^{\mathrm{c}}}{\mathrm{p}_{\mathrm{A}}^{\mathrm{a}}} \mathrm{p}_{\mathrm{D}}^{\mathrm{d}} \mathrm{p}_{\mathrm{B}}^{\mathrm{b}}=\mathrm{RT} \ln K_{\mathrm{p}}$
or $\mu_{\text {products }}^{0}-\mu_{\text {reactants }}^{\mathrm{o}}=-\mathrm{RT} \ln \mathrm{K}_{\mathrm{p}}$

$$
\text { which is constant at a given } \mathrm{T}
$$

$\therefore$ Equilibrium pressure function $\mathrm{K}_{\mathrm{p}}$ must be constant at given temperature i.e., independent of pressure

We have also established its relationship to the standard free energy change

$$
\Delta \mathrm{G}^{\mathrm{o}}=\Delta \mu^{\mathrm{o}} \quad \text { so that } \ln \mathrm{K}_{\mathrm{p}}=-\Delta \mathrm{G}^{\mathrm{o}} / \mathrm{RT}
$$

per mol or reaction

## VARIATION OF $\mathbf{K}_{\mathrm{p}}$ WITH TEMPERATURE

(VAN'T HOFF ISOCHORE)

$$
\begin{array}{rl|l} 
& \frac{d \ln K_{p}}{d T}=-\frac{1}{R} \frac{d(\Delta \mathrm{G} / \mathrm{T})}{\mathrm{dT}} & \begin{array}{l}
\frac{\mathrm{d}(\Delta \mathrm{G} / \mathrm{T})}{\mathrm{dT}} \\
= \\
= \\
\mathrm{RT}^{2}
\end{array} \\
=\left\{\mathrm{T} \frac{\mathrm{~d}(\Delta \mathrm{G})}{\mathrm{dT}}-\Delta \mathrm{G} \frac{\mathrm{dT}}{\mathrm{dT}}\right\} / \mathrm{T}^{2} \\
=\{\mathrm{T}(-\Delta \mathrm{S})-\Delta \mathrm{G}\} / \mathrm{T}^{2} \\
-\Delta \mathrm{H} / \mathrm{T}^{2}
\end{array}
$$

## (VAN'T HOFF ISOCHORE)

Integrated form if we assume $\Delta \mathrm{H}$ not to be a function of temperature over a short temperature range (cf. Kirchoff equation!).

$$
\operatorname{Ln} \frac{K_{P_{1}}}{K_{P_{2}}}=-\frac{\Delta \mathrm{H}^{\mathrm{o}}}{\mathrm{R}}\left\{\frac{1}{\mathrm{~T}_{1}}-\frac{1}{\mathrm{~T}_{2}}\right\}
$$

$\mathrm{Kp}_{1}$ measured at $\mathrm{T}_{1}$
$\mathrm{Kp}_{2}$ measured at $\mathrm{T}_{2}$
the standard enthalpy change for the reaction can be determined from these data


Any assumptions?

## FURTHER USES OF THE CHEMICAL POTENTIAL OF A SPECIES ( $\mu_{i}$ )

We will now make further use of the same general approach and format as before i.e., the chemical potential of the component is expressed relative to a value in a chosen standard state to make it possible to develop equations governing ideal solubilities and their temperature dependences. We will also derive the thermodynamic basis for the colligative properties of solutions such as the depression of the freezing point, the elevation of the boiling point and osmotic pressure.

In each case the chemical potential of the component in the solution written with reference to its value in a standard state is made equal to the value of the chemical potential of the pure component with which it is at equilibrium and this equation is then manipulated to extract the value of the quantity of interest e.g., the solubility of a solute in a saturated solution or the vapour pressure of a solvent over a solution containing an non-volatile solute or whatever is being considered, and the required relationship can be derived.

## CHEMICAL POTENTIALS IN IDEAL SOLUTION

For liquid mixtures - solutions of non-electrolyes

For each species: solvent is 1 and solutes 2,3.......i

$\mu_{\mathrm{i}}=\mu_{\mathrm{i}}^{\phi}+\mathrm{RT} \ln \mathrm{N}_{\mathrm{i}} \mathrm{C} |$| Standard State is the |
| :--- |
| pure component |
| N is the mole fraction |

For solutions of electrolytes and for solute species

$$
\begin{array}{l|l}
\mu_{\mathrm{i}}=\mu_{\mathrm{i}}^{\Theta}+\mathrm{RT} \operatorname{lnC}_{\mathrm{i}} & \begin{array}{l}
\text { Standard State is the } \\
\text { Infinite dilution } \\
\mathrm{C} \text { is the molar concentration }
\end{array}
\end{array}
$$

The difference between these standard chemical potentials $\mu_{\mathrm{i}}{ }^{\phi}$ and $\mu_{\mathrm{i}}{ }^{\theta}$ and the behaviour of non-ideal solutions is illustrated below:


If we substitute for $\mu$ into the general equation for chemical equilibrium - as we did earlier for gases - we get.

$$
\begin{array}{r}
\mathrm{RT} \ln \mathrm{~K}_{\mathrm{N}} \quad=\quad-\Delta \mu^{\phi} \text { and } \mathrm{RT} \ln \mathrm{~K}_{\mathrm{C}}=-\Delta \mu^{\ominus} \\
\text { Where } \quad \mathrm{K}_{\mathrm{N}}=\frac{N_{C}^{c} N_{D}^{c}}{N_{A}^{a} N_{B}^{b}} \text { and } \quad \mathrm{K}_{\mathrm{C}}=\frac{[C]^{c}[D]^{d}}{[A]^{a}[B]^{b}}
\end{array}
$$

$\mathrm{K}_{\mathrm{N}}$ and $\mathrm{K}_{\mathrm{C}}$ are the mole fraction and concentration equilibrium constants for the reactions, varying with temperature, but not with composition, provided that all components behave ideally i.e., that their chemical potentials obey the ideal equations given.

## EQUILIBRIUM BETWEEN IDEAL SOLUTION AND VAPOUR <br> (Henry's Law and Raoult's Law)

Vapour Phase: single species iat pressure $p_{i}$ - the ideal chemical potential is therefore

$$
\mu_{\mathrm{i}}=\mu_{\mathrm{i}}^{\mathrm{o}}+\mathrm{RT} \ln p_{\mathrm{i}}
$$

Solution: Two species at mole fractions
$\mathrm{N}_{1}$ (solvent)
$\mu_{1}=\mu_{1}{ }^{\phi}+\mathrm{RT} \ln \mathrm{N}_{1}$
$\mathrm{N}_{2}($ solute $)=1-\mathrm{N}_{1}$
$\mu_{2}=\mu_{2}{ }^{\phi}+R T \ln N_{2}$

These are two possibilities: either the solvent or the solute can be the vapour species.
(a) FIRST CASE - Vapour is solute species HENRY'S LAW

$$
\begin{array}{ll}
\mu_{2}{ }^{\text {vapour }}=\mu_{2}^{\text {solution }} & \text { at equilibrium } \\
\mu_{2}{ }^{\mathrm{o}}+\mathrm{RT} \operatorname{lng}_{2}=\mu_{2}{ }^{\phi}+\mathrm{RT} \ln \mathrm{~N}_{2} &
\end{array}
$$

If we are interested in the mole fraction that is dissolved at equilibrium, $\mathrm{N}_{2}$, then this is therefore given by

$$
\ln \mathrm{N}_{2}=\left(\mu_{2}{ }^{\mathrm{o}}-\mu_{2}{ }^{\phi}\right) / \mathrm{RT}+\ln \mathrm{p}_{2}
$$

At a given value of T this is obviously constant so that we can write $\mathrm{N}_{2}=\mathrm{k}_{2} \mathrm{p}_{2}$
This of course corresponds to HENRY'S LAW which was originally derived from empirical derivations.

The solubility of a gas is therefore seen to be proportional to its pressure. From the derivation of the equation we can also extract the meaning of the solubility coefficient $\mathrm{k}_{2}$.

$$
\mathrm{k}_{2}=\exp \left\{\left(\mu_{2}{ }^{\circ}-\mu_{2}{ }^{\phi}\right) / \mathrm{RT}\right\}=\exp \left(\Delta \mu_{\mathrm{v}} / \mathrm{RT}\right)
$$

We can identify $\Delta \mu_{\mathrm{v}}$ as $\Delta \mathrm{G}_{\mathrm{v}}$ i.e., the free energy change per mole for the transfer of 1 mole from the standard state in solution $\mathrm{N}_{2}=1$ to standard state in gas i.e., 1 atm .

(b) SECOND CASE: Vapour is the solvent species

## RAOULT'S LAW

$$
\begin{aligned}
& \mu_{1}{ }^{\text {vapour }}=\mu_{1}^{\text {solution }} \\
& \mu_{1}{ }^{\mathrm{o}}+\mathrm{RTlnp}_{1}=\mu_{1}{ }^{\phi}+\mathrm{RT} \ln \mathrm{~N}_{1}
\end{aligned}
$$

and now the vapour pressure of the solution at equilibrium is the property of interest and is given by

$$
\operatorname{lnp}_{1}=\left(\mu_{1}{ }^{\phi}-\mu_{1}{ }^{0}\right) / \mathrm{RT}+\ln \mathrm{N}_{1}
$$

which is seen to be constant at a given temperature so that we can write

$$
\mathrm{p}_{1}=\mathrm{k}_{1} \mathrm{~N}_{1} \quad \text { RAOULT'S LAW }- \text { once again first derived }
$$ from empirical observations

But what is the value of this constant $\mathrm{k}_{1}$ ?
Firstly it is the reciprocal of the Henry's Law constant for the species (the standard chemical potential terms are reversed). $\mathrm{k}_{1}$ is also the value of the vapour pressure of the pure solvent $\left(\mathrm{N}_{1}=1\right)$ at this temperature, $\mathrm{p}_{1}{ }^{\circ}$ so that we have:

$$
\begin{aligned}
\mathrm{p}_{1} & =\mathrm{p}_{1}{ }^{\circ} \mathrm{N}_{1} \\
& =\mathrm{p}_{1}{ }^{\circ}\left(1-\mathrm{N}_{2}\right)
\end{aligned}
$$

Whence we have $\left(p_{1}{ }^{0}-p_{1}\right) / p_{1}{ }^{0}=N_{2}$
i.e., The fractional lowering of the vapour pressure of the solvent is equal to the mole fraction of the solute. This is an alternative statement of Raoult's law.

## IDEAL SOLUBILITY OF GASES

$\mathrm{k}_{2}$ is the mole fraction dissolved at unit pressure (atmospheric) and is the Henry's Law solubility coefficient - it is ideally equal to the reciprocal of the extrapolated saturation pressure of the liquefied gas at the same temperature, since the equilibrium equation, $\mathrm{N}_{2}=\mathrm{k}_{2} \mathrm{p}_{2}$, can equally well be expressed in Raoult's Law form.

$$
\mathrm{N}_{2}=\mathrm{p}_{2} / \mathrm{p}_{2}{ }^{0}
$$

$\mathrm{p}_{2}{ }^{\mathrm{o}}$ is the vapour pressure of the pure liquefied solute
i.e., Ideal mole fraction solubility $\left(\right.$ at $\left.p_{2}=1 \mathrm{~atm}\right)=1 / \mathrm{p}_{2}{ }^{\circ}$

Hence the ideal solubility can be readily calculated for any gas whose $\mathrm{p}_{2}{ }^{\circ}$ versus T relationship is known in the liquid state and can be extrapolated to room temperature.

The temperature variation of ideal solubility is the inverse of the temperature dependence of the vapour pressure.

Ideal solubility decreases with increasing temperature - gradient is $\frac{\mathrm{d}\left(\left(\ln N_{2}\right)\right.}{\mathrm{d}(1 / \mathrm{T})}$ of the same value $\left(=\frac{\Delta H}{R}\right)$ but opposite in sign from that of the vapour pressure dependence i.e., $\Delta \mathrm{H}_{\text {soln }}=\Delta \mathrm{H}_{\text {vap. }}$.

Example: for permanent gases $\mathrm{p}_{2}{ }^{\circ}$ at 298 K will be large: for $\mathrm{CH}_{4}=370$ atmospheres. Hence the ideal solubility is small $-1 / 370=0.0027$ mole fraction. The value found in non-polar solvents are $0.002-0.003$.

## EQUILIBRIUM BETWEEN IDEAL SOLUTION AND SOLID

(Solubility Equation, Temperature Dependence of Solubility and Freezing Point Depression)

The consideration of a system with these components allows us to develop a solubility equation and the dependence on temperature of the solubility if the solid is the solute. But if we choose the solid to be the solvent then we can develop equations to quantify the freezing point of an ideal solution.

Solution

$$
\mathrm{N}_{1} \text { solvent }
$$

Equilibrium Condition
$\mu_{\mathrm{i}}$ crystal $=\mu_{\mathrm{i}}$ solution
Crystal $\quad \mathrm{N}_{\mathrm{i}}=1$

FIRST CASE: some of the solute precipitates out to provide the solid phase
Consider first the case where the solute is crystal - this represents a solubility equilibrium. The superscript C denotes a crystal (solid) phase.

$$
\begin{array}{ll}
\mu_{2}{ }^{\mathrm{C}}=\mu_{2}{ }^{\phi}+\mathrm{RT} \ln \mathrm{~N}_{2} & \text { for saturated solution } \\
\ln \mathrm{N}_{2}=\left(\mu_{2}{ }^{\mathrm{C}} \mu_{2}{ }^{\phi}\right) / \mathrm{RT}=-\Delta \mathrm{G}^{\mathrm{o}} \mathrm{~S} / \mathrm{RT} &
\end{array}
$$

where $\Delta \mathrm{G}^{\circ}$ s is the free energy of solution

$$
\text { and is } \equiv \mu_{2}{ }^{\phi}-\mu_{2}{ }^{\mathrm{C}}
$$


$\operatorname{lnN}{ }_{2}$

Temperature dependence of ideal solubility

$$
\begin{aligned}
\frac{\mathrm{d}\left(\operatorname{lnN}_{2}\right)}{\mathrm{dT}} & =\frac{\mathrm{d}}{\mathrm{dT}}\left(-\Delta \mathrm{G}^{\mathrm{o}} \mathrm{~S} / \mathrm{RT}\right) \\
& =1 / \mathrm{R} \frac{\mathrm{~d}}{\mathrm{dT}}\left(-\Delta \mathrm{G}^{\mathrm{o}}{ }_{\mathrm{s}} / \mathrm{T}\right)=\Delta \mathrm{H}^{\mathrm{o}}{ }_{\mathrm{s}} / \mathrm{RT}^{2}
\end{aligned}
$$

Where $\Delta \mathrm{H}_{\mathrm{s}}{ }_{\mathrm{s}}$ is the enthalpy of solution.
The integrated form is $\ln \mathrm{N}_{2}(\mathrm{sat})=-\Delta \mathrm{H}_{\mathrm{s}}{ }^{\mathrm{s}} / \mathrm{kT}+$ constant .
or $\ln \left(\frac{N_{2}^{\prime}}{N_{2^{\prime \prime}}}\right)=-\frac{\mathrm{AH}^{\mathrm{o}}{ }_{s}}{\mathrm{R}}\left\{\frac{\mathrm{I}}{\mathrm{T}^{\prime}}-\frac{\mathrm{I}}{\mathrm{T}^{\prime \prime}}\right\}$

Now if $\mathrm{T}^{\prime \prime}$ is the melting point of the solute then $\mathrm{N}_{2}{ }^{\prime \prime}=1$.
Ideal liquids mix in all proportions and $\Delta \mathrm{H}^{\circ} \mathrm{S}=\Delta \mathrm{H}_{\mathrm{f}}$ (fusion of solute)
For IDEAL solutions

$$
\begin{aligned}
\ln N_{2} & =-\frac{\Delta \mathrm{H}_{\mathrm{f}}}{\mathrm{R}}\left\{\frac{1}{\mathrm{~T}}-\frac{1}{\mathrm{~T}_{\mathrm{f}}}\right\} \\
& =-\frac{\Delta \mathrm{H}_{\mathrm{f}}}{\mathrm{R}}\left\{\frac{\mathrm{~T}_{\mathrm{f}}-\mathrm{T}}{\mathrm{TT}_{\mathrm{f}}}\right\}=\frac{\Delta \mathrm{S}_{\mathrm{f}}}{\mathrm{R}}\left\{\frac{\mathrm{~T}_{\mathrm{f}}-\mathrm{T}}{\mathrm{~T}}\right\}
\end{aligned}
$$

IDEAL solubilities of solids determined only by their m.p. and enthalpy (or entropy) of fusion.

Note: that no properties of the ideal solvent are relevant. Why is this true?

SECOND CASE the solvent freezes and provides the solid phase
This is where the solvent is the crystal (at the freezing point of the solution) - this allows us to calculate the freezing point depression of the solution. At equilibrium we have:

$$
\mu_{1}{ }^{\mathrm{c}}=\mu_{1}{ }^{\phi}+\mathrm{RT} \ln \mathrm{~N}_{1}
$$

Using the same argument as above but now in terms of the solvent (species (1)) leads to the same equation for the composition of the solution $\mathrm{N}_{1}$ in equilibrium with the melting (solvent) crystal.
$\ln \mathrm{N}_{1} \quad=\quad-\frac{\Delta \mathrm{H}_{\mathrm{f}}}{\mathrm{R}}\left\{\frac{\mathrm{T}_{\mathrm{f}}-\mathrm{T}}{\mathrm{TT}_{\mathrm{f}}}\right\}$

$$
\cong \quad-\frac{\Delta \mathrm{H}_{\mathrm{f}}}{\mathrm{R}} \frac{\Delta \mathrm{~T}_{\mathrm{f}}}{\mathrm{~T}_{\mathrm{f}}{ }^{2}} \quad \text { When } \mathrm{T} \approx \mathrm{~T}_{\mathrm{f}} \text { so that } \Delta \mathrm{T}_{\mathrm{f}} \text { is small }
$$

So that the Freezing Point Depression, $\Delta \mathrm{T}_{\mathrm{f}}$, is given as

$$
\begin{aligned}
\Delta \mathrm{T}_{\mathrm{f}} & \approx\left(-\mathrm{RT}_{\mathrm{f}}^{2} / \Delta \mathrm{H}_{\mathrm{f}}\right) \ln \mathrm{N}_{1} \\
& \approx\left(-\mathrm{RT}_{\mathrm{f}}^{2} / \Delta \mathrm{H}_{\mathrm{f}}\right)\left(1-\mathrm{N}_{2}\right) \\
& \approx\left(-\mathrm{RT}_{\mathrm{f}}^{2} / \Delta \mathrm{H}_{\mathrm{f}}\right)\left(-\mathrm{N}_{2}\right) \quad \text { where } \mathrm{N}_{2} \text { is small } \\
& \Delta \mathrm{T}_{\mathrm{f}} \approx \frac{\mathrm{RT}_{\mathrm{f}}^{2}}{\Delta \mathrm{H}_{\mathrm{f}}} \mathrm{~N}_{2} \quad \text { i.e., is proportional to the } \\
& \approx\left(\frac{\mathrm{RT}_{\mathrm{f}}^{2}}{\Delta \mathrm{H}_{\mathrm{f}}} \frac{\mathrm{M}_{1}}{1000}\right) \mathrm{n}_{2} \quad \text { for } \mathrm{n}_{2} \text { moles of solute in } 1000 \mathrm{~g} \text { solvent }
\end{aligned}
$$

so that
so that the cryoscopic constant of the solvent $\mathrm{K}_{\mathrm{f}}$ can be calculated without ever making a measurement of a freezing point depression and is given by:

$$
\mathrm{K}_{\mathrm{f}} \approx\left(\begin{array}{ll}
\frac{\mathrm{RT}_{\mathrm{f}}^{2}}{\Delta \mathrm{H}_{\mathrm{f}}} & \frac{\mathrm{M}_{1}}{1000}
\end{array}\right)
$$

All properties of the solvent - we can evaluate the cryoscopic constant (ideal) if $\Delta \mathrm{H}_{\mathrm{f}}, \mathrm{T}_{\mathrm{f}}$ and $M_{1}$ are known. Note that these are all properties of the solvent.


IDEAL SOLUTION - SOLVENT EQUILIBRIUM (Osmotic Pressure)


Semi permeable membrane

The osmotic pressure of ideal solutions

The chemical potential in the pure solvent is higher so that the solvent passes through the membrane
$\mu_{1}{ }^{\text {soln. }}=\mu_{1}{ }^{\phi}+\mathrm{RT} \ln \mathrm{N}_{1}$
Pure Negative term
Solvent
$\mathrm{N}_{1}<1$
Osmosis - the passage of solvent through the membrane takes place

When this osmosis is stopped by the application of an additional osmotic pressure on the solution - $\mu_{1}$ (solution) is raised to $\mu_{1}{ }^{\phi}$
$\mu_{1}$ is solution with $\pi=\mu_{1}$ in solvent ( 1 atm )

$$
\mu_{1}^{\phi}(\pi)+\mathrm{RTln} \mathrm{~N}_{1} \quad=\quad \mu_{1} \text { in solvent at } 1 \mathrm{~atm}
$$

$$
\mu_{1}{ }^{\mathrm{o}}(\pi)-\mu_{1}{ }^{\mathrm{o}}(1 \mathrm{~atm}) \quad=\quad-\mathrm{RT} \ln \mathrm{~N}_{1}
$$

Work of compression of 1 mole from pressure 1 to pressure $\pi$

$$
=\int_{1}^{\pi} V_{1} d p \quad \approx \quad \mathrm{~V}_{1} \int_{1}^{\pi} \mathrm{dp} \quad \approx \mathrm{~V}_{1} \pi
$$

$\therefore$ Ideal solution comes to osmotic equilibrium when at a pressure

$$
\begin{aligned}
\pi= & =-\frac{\mathrm{RT}}{\mathrm{~V}_{1}} \ln \mathrm{~N}_{1} \\
\pi & \approx \frac{\mathrm{RT}}{\mathrm{~V}_{1}} \ln \left(1-\mathrm{N}_{2}\right) \\
& =\frac{\mathrm{RT}}{\mathrm{~V}_{1}}\left(\mathrm{~N}_{2}\right) \\
& \approx \frac{\mathrm{RT}}{\mathrm{~V}_{1}} \frac{\mathrm{n}_{2}}{\mathrm{n}_{1}+\mathrm{n}_{2}}
\end{aligned}
$$

i.e., the osmotic pressure $\quad \pi \approx \mathrm{RTC}_{2}$ where $\mathrm{C}_{2}=\frac{\mathrm{n}_{2}}{\mathrm{n}_{1} \mathrm{~V}_{1}}$ \{molar concentration $\}$

Note: This equation has the same form as the equation of state for an ideal gas.

$$
\pi \mathrm{V}=\pi \mathrm{RT}
$$

