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SENIOR FRESHMAN CHEMISTRY 
 
 
 
 
Chemical Thermodynamics     Prof J. Corish 
 
(Course of ten lectures)      jcorish@tcd.ie 
 
 
COURSE SYNOPSIS 
 
 This course will follow from your Junior Freshman treatment of this subject with 
the three laws of thermodynamics being formally introduced. The course will extend the 
range of state functions that are considered and in terms of the First Law develop the 
relationship between Cp and Cv (heat capacities at constant pressure and constant volume, 
respectively) and introduce the variation of enthalpy changes with temperature (Kirchoff’s 
Law). 
 
The concept of entropy, used in the second law to assist in the derivation of a criterion for 
direction of chemical change, will be introduced by means of the Carnot cycle. The 
methods used to evaluate Third Law entropies will be explained, as will the existence and 
nature of residual entropy in some substances. 
 
 The course will then move on to consider the thermodynamics of open systems and 
the concept of the chemical potential. After its introduction, the chemical potential will be 
utilised to describe and to derive relationships for both physical and chemical equilibria. 
The thermodynamic basis for the Gibbs Phase Rule will be illustrated and the Clausius-
Clapeyron and Van’t Hoff equations derived. Finally, relationships between the chemical 
potentials of a component present at equilibrium in different phases will be used to 
develop the thermodynamic treatment of ideal mixtures. Equations will be derived for the 
ideal solubilities of gases and solids and the thermodynamic basis for Henry’s and 
Raoult’s Laws and for the colligative properties of solutions will be illustrated. In this way 
a firm thermodynamic foundation will be provided for a number of the concepts and 
equations introduced empirically in Junior Fresh Physical Chemistry.  
 
Reading: 
 
The chapters on thermodynamics in modern Physical Chemistry (such as those authored 
or co-authored by P. W. Atkins) will probably be most easily readable and useful. 
Other books are: 
‘The Principles of Chemical Equilibrium’, K. Denbigh (Cambridge) 
‘Chemical Thermodynamics’ D. J. G. Ives (McDonald) 
‘An introduction to the study of Chemical Thermodynamics’ D.H.Everett (Longmans) 
‘Basic Chemical Thermodynamics’ E. Brian Smith (Clarendon, Oxford) 
‘The Second Law’ P. W.  Atkins (Scientific American Books) 
Relevant Chapters in ‘Physical Chemistry’ Thomas Engel and Philip Reid (Pearson)  
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Some Definitions – and a review 
 
Thermodynamics: Science of heat and temperature and of the laws governing their 
inter-conversion i.e., heat into mechanical, electrical, chemical, or biological forms of 
energy. 
 
Phenomenological theory concerning macroscopic properties such as pressure, 
temperature volume etc… It is independent of microscopic explanations e.g., the atomic 
theory. 
 strengths: not dependent on these explanations. 
 weaknesses: does not give any insight into atomic phenomena. 
 
Classical Thermodynamics: 
self-contained, constructed as a set of postulates – the laws of thermodynamics – 
completely general and is used by physicists, chemists, engineers and biologists.  Can be 
handled completely mathematically and then adapted for specific cases – this is not how 
we will handle it. 
 
It is an exact science – similar to geometry - and based on a number of theorems or laws – 
the laws of thermodynamics 
_________________________________ 
 
As a matter of interest – we are not in a position to and will not study this aspect of the 
subject – classical thermodynamics can be shown to be bridged to atomic theory and 
behaviour by statistical thermodynamics (statistical mechanics). So it is, in fact, in 
complete harmony with our current understanding of chemistry and other subjects.  This 
bridge would not be necessary in order for classical thermodynamics to stand. 
_________________________________ 
 
 Deals with EQUILIBRIUM STATES only 
 
not with paths  by which such different states are connected. 
 
not with the rates at which such paths may be traversed. 
 
EQUILIBRUIM STATES particularly as the term relates to chemical systems:  
 
temperature uniform throughout and at equilibrium with its surroundings; 
mechanical properties balanced i.e. pressure uniform; and 
No net chemical change - this allows for dynamic equilibrium. 
 
 
SYSTEM: A thermodynamic system is that part of the physical universe the properties 

of which are under observation. The system is confined to a definite place 
in space by boundaries that separate it from the rest of the universe – the 
surroundings. 
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A system is isolated when its boundary prevents any interaction with the surroundings. 
Clearly a completely isolated system would not be observable and so the concept is ideal. 
 
Closed system: possibility of energy exchange with the surroundings but no transfer 

of matter 
Open System:  can exchange both energy and matter with its surroundings 
Adiabatic System: no heat transfer across the boundary is possible. 
 
 
PROPERTIES OF A SYSTEM 
 
Extensive Properties: the value of the property for the whole body is the sum of the 

values for all of its constituent parts e.g., mass, volume…. 
 
Intensive Properties: can be specified at each point in a system and may vary from point 

to point when equilibrium has not been attained e.g., pressure, 
density…. 

 
The STATE of a system is specified by giving the values of all pertinent macroscopic 
properties so that the system can be precisely duplicated elsewhere. 
 
A change in state is completely defined when the initial and final states are specified. 
 
The path of the change is defined by giving the initial state, the sequence of intermediate 
states arranged in order traversed and the final state. 
 
A cycle is traversed when a system that has undergone a change in state returns to its 
initial state.  
 
STATE FUNCTIONS (thermodynamic properties)  
  
Quantities that depend on the state of the system only and not, for example, on its history 
are called state functions e.g., volume, temperature and pressure are state variables for a 
homogeneous system. 
 
 ΔX  =  Xf  -  Xi 

 

 change in   Final    Initial 
 state function   Value    Value 
 
ΔX is independent of the path followed to effect the change. The change in the value of a 
state function taken through a cycle must therefore be equal to zero. 
 
State functions may be related by an equation of state e.g., that for an ideal gas 
 
PV    =     nRT 
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FIRST LAW OF THERMODYNAMICS 
 
“Die Energie der Welt ist konstant”  (Clausius) 
 
This law is an extension of the principle of the conservation of energy and can be 
introduced by looking at a number of different ways in which energy can be put into a 
system. 
 
 

Adiabatic walls 
 

 
System is at equilibrium 
 
Its state can be changed by 
 
(i) WORK – do work on system or allow it to do 

work on the surroundings. 
 

           WORK (pressure x volume (change in volume)) 
force/area(length2) x (length3)= force x length    
 

(ii) HEAT – put system in contact with another 
system at different temperature – allow heat flow 
to occur. 

 
  
 
These do not take account of other possible changes which could be brought about by 
external fields (magnetic, electrical etc.) or by addition or removal of gas from the system.  
 
Results:  the work required to bring a thermally insulated system from one state to 

another is independent of the source of the work and of the path followed. 
 
Suggestion: for a thermally isolated system there is certain property that changes by the 

amount of work done on or by the system. 
 
Called INTERNAL ENERGY  Symbol U 
 
ΔU(adiabatic) = - w(adiabatic) 
 
  ΔU = change in the internal energy      w = work done by the system 
 
  U is a state function (thermodynamic property) 
 
ΔU = Uf – Ui   independent of source of the work and of the path  
   followed from state i to state f. 
 
   (i ≡  initial  and f  ≡  final) 
  

P  
  V 
    T 
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Results: Second method: it turns out that when no work is done on or by the system 

that the changes in the internal energy of the system ΔU are equal to the 
energy transferred to or from the system by thermal contact, i.e., the heat 
transferred. 

 
 ΔU(zero work) = q(zero work) 

 
  ΔU = change in the internal   q = heat absorbed 
  energy of the system     by the system 
 
 
The First Law can then be formulated as follows: 
  

 ΔU =  q - w 
 
Change in internal energy = heat absorbed by the system - work done by the system  
_________________________________ 
 
U is a state function 
 
q and w are not, in general, state functions 
 
_________________________________ 
 
Q. How is the internal energy stored? 
 
A. As the translational, vibrational, rotational, electronic intermolecular energies of the 
atoms, molecules in the system. These molecules possess electronic energy and are 
constantly moving about and rotating and vibrating – if heated they can move, vibrate etc. 
more quickly. 
 
 NO ABSOLUTE VALUES of U -   we can speak only of changes in U, or ΔU.  
_________________________________ 
 
WORK: exists only at the time at which it is done – form of energy transfer. 
 
Units  - the fundamental unit is the Joule – a force of 1 Newton along a path of 1 meter – 
remember force x distance 
 
Electrically - 1 coulomb through 1 volt. 
 
(the thermodynamical calorie is defined as 4.1840 Joules). 
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DIFFERENCE BETWEEN HEAT AND WORK 
 
HEAT: transfer that causes or utilizes chaotic “motion” in the surroundings 
 
WORK: transfer of energy that utilizes or causes uniform motion of atoms in the 

surroundings. 
 
(Fire came before machines!) 
 
Having established the principal idea regarding the internal energy we will now see that it 
is better to use another type of energy which takes pressure-volume work into account 
automatically – called the heat content or enthalpy.  It is especially suitable because we 
live in a constant pressure (1 atmosphere) world. For this reason you have already been 
introduced to enthalpy. 

 

Expansion/Contraction work is very common and important. System expands against or is 
compressed by an outside pressure P – typically 1 atmosphere. 
 
 
 dw = work done  =  force x displacement  
    = P x A  x dx 
    =  p dV 
 
 
 Here P is the pressure, A the area over which it acts and dx the displacement so that A x 
dx is the volume change dV. Integrating from the final to the initial volume then gives the 
work done, w as being equal to 
     

PdV∫=
i

f

v

v
w

 
                        

 
From the First law q = ΔU + w 
 
We can measure heat changes (calorimetrically) fairly readily.  So that if no work other 
than pressure volume work is done and if the increase in volume during a reaction is ΔV 
then 
ΔU = q – w = q – PdV = q – P(Vf

 – Vi) 
 
∴ Uf – Ui = ΔU = q – PVf + PVi  so that 
 
(Uf + PVf) – (Ui + PVi) = q 
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Here it is obvious that the heat absorbed during the reaction is a quantity that depends 
only on the initial and final states because U, P and V are all state functions. 
 
So this more useful state function is defined as the enthalpy (or heat content.  
The symbol is H 
 
ENTHALPY   H = U + PV 
 
U is part of this function – again we do not attempt to give absolute values – only changes, 
i.e., ΔH values, are measured. 
 
ENTHALPY is the basis for thermochemistry (Leaving Certificate course and JF). 
 
 
Reminder about the Law of Hess (see also below): 
 
 
Although this law was originally derived from empirical observation and formulated by 
Hess, it is clear that it follows automatically from the fact that enthalpy is a state function. 
 
 
ΔH, the enthalpy change, is the heat absorbed or given out in a reaction occurring at 
constant pressure.  We shall see later that ΔH always influences, and sometimes 
dominates, the size of the equilibrium constant, K, for a reaction. 
 
 heat absorbed (taken in)  ENDOTHERMIC ΔH positive 
 heat evolved (given out)  EXOTHERMIC ΔH negative 
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RELATIONSHIP BETWEEN Cp AND Cv 
 
 

- GENERAL CASE AND IDEAL GAS CASE  
 
Cp  = 

P
⎟
⎠
⎞

⎜
⎝
⎛
∂
∂

T
H    Cv  = 

V
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⎠
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⎝
⎛
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T
U  
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P
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H = U + PV 
 

P
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       at constant P (2) 
 
U = f (T,V) 
 
 dU = dT

T
V

V
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U
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Substitute (2) into (1) 
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Cp-Cv = P 
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External – Contribution to Cp 
Through change in volume with 
Temperature by external  pressure P 
 

Internal – change in internal 
energy with volume with volume 
with P 

 
  
       
Cp – Cv = 
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For a perfect gas 

T
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U  = O Joules Experiment  U = f(T) 

      only for ideal gas 
 
  Cp – Cv   = p 
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1 mole   Cp – Cv  = R for ideal gas 
 

(i) In general Cp > Cv because extra work is done in expansion against 

external pressure and “internal” pressure  
T
⎟
⎠
⎞

⎜
⎝
⎛
∂
∂

V
U

. 

(ii) Internal contribution is zero for ideal gas – large for liquids and 
solids. 
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ISOTHERMAL REVERSIBLE COMPRESSION OF AN IDEAL GAS 
 
A very common type of work is EXPANSION work which is done when a system 
expands against an outside pressure or is compressed by such an external pressure. 
 

 dw  =  work done = force x displacement 
    = pressure x area x displacement 
    = pdV 
 
 

 so that  w =   
∫
fV

iV
pdV

 
 

p is the pressure and Vi and Vf are the initial and final volumes, respectively. 
 
In the limit a reversible reaction proceeds infinitely slowly through a sequence of 
equilibrium states: therefore the equation of state for an ideal gas can be used 
 

   pV = nRT 
 

 so that    p = V
nRT

 and 
 

 hence  w  =  
∫
fV

iV

nRT
v dV 

 
 
 and since the process is isothermal 
 

   w  =  nRT ∫
fV

iV v
dV  so that 

 

    =  nRT ln i

f

v
v

 
 

also since piVi   =  pfVf for an ideal gas the work is also equal 
 

   to                     nRTln 
f

i
p
p

 = 

_____________________________________________________________________ 
 
Questions:  
 
(i)  What would the value of w be if the expansion took place against a constant 

pressure? 
 (ii) What is the maximum work obtainable from the expansion of a gas? 
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REVERSIBLE ADIABATIC EXPANSION OF AN IDEAL GAS 
 
 

  
 
 
 
 

 
 
 
 
 
Vf Pf Tf  

Vi Pi Ti 
 
 
Because the change is adiabatic Ti ≠ Tf 
 
  dU  = δq - δw  (δq  = 0) 
 
   =  - δw  = -PdV 
 

  also cv  =  vdT
dU

 
 
U for an ideal gas is independent of V and p and depends only on T 
 
 dU = cvdT  dU  = -pdV 
 
 cvdT  + pdV  = 0   also for ideal gas pV = nRT 
 

 cvdT  +  V
nRT

 dV  = 0 
 

 cv T
dT

  + nR  V
dV

  = 0 
 
Integrate initial to final state and assume and assume cv independent of T. 
 

 
γ

c
c

define weandnRccnow
v

p
vp =⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
=−

 
 
 

       
vv

vp

v

p

c
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c

cc
1

c

c
1- Therefore =

−
=−=γ            

___________________________________________________________  
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Problem: 100g of nitrogen at 298K are held by a piston under 30 atm pressure.  The 
pressure is suddenly released to 10 atm and the gas adiabatically expands.  
If cv for nitrogen is 20.71 J mol-1 K-1 calculate the final temperature of the 
gas.   

 
  What are ΔU and ΔH for the change? 
  
  Assume that the gas is ideal. 
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VARIATION OF ENTHALPY WTH TEMPERATURE 
 
(Kirchoff, 1858) 
 
 
   ΔHT2 
           A   +   B           C   +   D         at            T2 
 
          ΔH1        ΔH2 

 

 

    

 

   ΔHT1            
         A    +   B             C   +  D  at T1 
 
Same reaction at two temperatures, T1 and T2  
 
Are the enthalpies of reaction, ΔHT2  and ΔHT1 the same? 
 
Complete the cyclic pathway: ∫ =Δ O  H  
 
 ΔH1   +   ΔHT2  -  ΔH2  -  ΔHT1  =  O  so that 
 
 ΔHT2   =  ΔHT1  -  ΔH1  +  ΔH2   

 

 dT)(reactantspCΔH 2T

1T
2 ∫=  

 

 dTproducts)(pC  =    H 2

1
2 ∫Δ

T

T
 

So that if we define Cp(products) – Cp(reactants) = ΔCp  we have 
 
  ΔHT2   =  ΔHT1 +  dTΔC2T

1T p∫   

 

__________________________________________________________________________________________ 

 

 
The difference between ΔHT2 and ΔHT1 depends on  
 
(i) the difference between T2 and T1 
  - if T2   ≈  T1,  then ΔHT2  ≈   ΔHT1 

 
(ii) the value of ΔCp  -  would you expect this be large? 
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Problem 1 
 

The value of ΔH at 298 K is -92.422 kJ for the reaction N2(g)  +  3H2(g) →  2NH3(g) 
 
Given the heat capacity at constant pressure values (JK-1 mol-1) below calculate the value 
of the enthalpy change for this reaction at 932 K. 
 

 
 Cp (H2) =  28.772  +  0.276 x 10-3T  +  1.167 x 10-6T2 
 Cp (N2) =  26.347  +  7.607 x 10-3T  -  14.428x 10-6T2 
 Cp (NH3) =  24.757  +  37.483 x 10-3T  +  7.377 x 10-6T2 
 
 
 

Problem 2  Supplemental 1996 Question 1(b) 
 

The value of the enthalpy change, ΔH, for the reaction  
 
 2A(g)  +  B(g) ⇒  C(g) 
 
at 300 K is 24.2 kJ mol-1.  Calculate the value of ΔH at 500 K given the following heat 
capacity data. 
 
 Substance  Heat Capacity (Cp JK-1mol-1) 
 
     A   12.6  +  0.50  x  10-3T 
     B   29.4  +  0.75  x  10-3T 
     C   31.7  +  0.68  x 10-3 T 
 
What would be the effect of increasing the pressure on this reaction? 
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SENIOR FRESHMAN CHEMISTRY 
 

FUNCTIONS OF TWO VARIABLES  
– EXACT DIFFERENTIALS 

 
 

A linear differential expression containing two variables of the form 
 
 dZ(x,y) = M(x,y) dx   + N(x,y) dy 
 
is an exact differential if there exists a function f(x,y) such that df(x,y) = dZ(x,y) 
 
 
 
If dZ is an exact differential the line integral (i.e., the integral over some path), ∫ dz(x,y) 
depends only on the initial and final states i.e.  
 
State Function. 
 
 
 
The integral over a cycle ∫ dZ(x,y) = O (initial and final states the same) and  
 

 yx
Zz

∂∂
∂  = xy

Z
∂∂

∂ 2
      CROSS DIFFENTITIATION  

IDENTITY 
 
 
Example 1  Z  =  f(x,y)  =  2x3 + 3x2y2 + 4x + 3y2 + 1 
 

   ( )
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Z
∂

∂  = 6x+6xy2 + 4   and  
x
⎟
⎠
⎞⎜

⎝
⎛

∂
∂
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⎠
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∂
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Z

δ
2

 = 12 xy   and ⎟
⎠
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⎝
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∂
∂
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Z

δ
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⎠
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∂
∂

xy
Z

δ
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Example 2  Ideal Gas  PV = nRT   or   P = 
V

nRT  

 

2V
nRT

V
P

T
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P
∂

∂   =  
V
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CROSS DIFFERENTIATION IDENTITY 

 
 
EULER OR MAXWELL RELATIONS  
 
1. du =  TdS – pdV  
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2. dH = TdS + VdP 
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3. dF = -SdT - PdV 
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4. dG = -SdT + VdP 
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      2nd Differentials 
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THE SECOND LAW OF THERMODYNAMICS 
 
 
The First Law ‘balances the books’ – energy may be transformed from one form to 
another – never created or destroyed. This is intuitively easy to understand but does not 
give any indication of the direction of change. The Second Law sums up our experiences 
with equilibria just as the First Law sums up our experiences with energy and so it allows 
us to predict the direction of physical and chemical changes. 
 
The purpose here is to establish a criterion for the feasibility of a given physical or 
chemical transformation under specified conditions. What is needed to do this is a state 
function (thermodynamic property) that changes in a characteristic manner when the 
reaction proceeds spontaneously. The objective is attained indirectly by considering a 
function called entropy (symbol S) which is the criterion for change in an isolated system 
and then combining it with the tendency for energy change to get the criterion for change 
in a real system. This combination, which is the criterion for spontaneous change, turns 
out to be the change in the Gibbs Free Energy function, ΔG, given by the equation 
 

ΔG   =   ΔH   -   TΔS 
 
ΔG is less than zero for all spontaneous changes: when ΔG is equal to zero the system is at 
equilibrium and a change for which ΔG is greater than zero is not thermodynamically 
feasible in the direction specified.      
 
 
 
 
ENTROPY 
 
The entropy, S, of a system is an extensive state function which is defined for an 
infinitesimal isothermal process by: 
 

dS   =   δqrev / T 
 
Here δqrev is the heat absorbed by the system if the process is carried out reversibly. This 
equation clearly shows the importance of reversible processes in thermodynamics even 
though they cannot occur in nature and even if they could they would be so slow as to take 
an infinite time to progress through a series of equilibrium states. The value of the entropy 
can only be found if we can invent a means to determine the value of δqrev – i.e., devise a 
way in which the change can be carried out reversibly and the heat change calculated. 
 
 
We will use the Carnot cycle to show that entropy so defined is a State function. 
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In a physical interpretation entropy is a measure of molecular disorder and may also be 
defined as  

 
S   =   k ln Ω 
 
Here Ω is the number of microscopic realisations of specified macrostate of fixed energy. 
The tendency is for Ω to maximise under the randomising influence of temperature.  
 
The concept of entropy in an isolated system will be demonstrated by examining in detail 
the isothermal intermixing of two gases. To do this it is convenient to consider that an 
infinitesimal change in entropy (dS) for a system can be divided into an external part due 
to its interaction with its surroundings (deS) and  an internal part due to changes occurring 
within the system itself (diS) so that: 
 
dS   =   deS   +   diS 
 
In all cases deS   =   δq / T and this can be easily measured but we can say only that diS  ≥  
0. For reversible changes diS  =  0 and for irreversible (natural, spontaneous) changes diS  
>  0.  So for a change carried out reversibly we have dS  =  δqrev / T. 
 
In an isolated system where deS  =  0,   dS  = diS.  Because for a spontaneous change diS  
>  0 in an isolated system dS  >  0.  
 
This is the basis of the well-known statement of the Second Law: 
 
In an isolated system only those changes are possible that result in an increase in the 
entropy of the system   
 
 
 
 
We will begin by considering something that we know to be a spontaneous process – the 
intermixing of two perfect gases. To calculate the entropy change we need to invent a 
reversible path. In this case the direction is opposite to that of the mixing – but because 
entropy is a state function we will simply need at the end to change the sign of the value 
calculated. 
 
Next we will go through the Carnot cycle with a view to showing that entropy is a State 
function. Note that we will be making use of parts of what we discussed earlier, namely 
isothermal and adiabatic expansions/compressions of perfect gases, in considering this 
hypothetical heat engine. 
 
We will then introduce the Free Energy Functions and show why the names ‘Free’ or 
‘Available’ energy are appropriate. The most important of these for chemistry is the 
Gibbs Free Energy, G. 
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TO CALCULATE THE CHANGE IN ENTROPY FOR THE INTERMIXING  
 
OF TWO PERFECT GASES 
 

 V/2  V/2  
Remove 

→ 
Partition 

 V   
 T    nH2

  T    nN2
  T nH2   + nN2

 

 P  P  P   
     

 
 ΔS  = Sf – Si     ΔS =  ΔeS   +   ΔiS 
        ΔeS  =   O 
       
so that  ΔS    =   ΔiS 
      which is > O for a 
      spontaneous change 
______________________________________________________________________- 
 
To calculate ΔS we will unmix the gases reversibly – because S is a state function 
 ΔSrev  = ΔSirrev  but we can only evaluate ΔS in a reversible process. 
 
          Permeable to H2 
 
   

 

 

 

 

 

 

 

 

 

  
 
H2  

 
 
 

 
 
N2 

 

    

 Mixture       

 T  ↓ 
qH2 

↓ 
qN2 

   
  Permeable to N2 
 
 
 
T, the initial temperature of the gases is unchanged. 
 
  S    =   ΔeS  +  ΔiS,        Reversible process ΔiS  =  O 
  
Therefore ΔS  =   qrev/T ; q  = qH2  +  qN2 
 
First Law: ΔU    =   q – w   
   =   qH2  +  qN2  -  wH2  -  wN2 
But ΔU = O for isothermal reversible expansion/contraction ideal gas 
    
 so that     qH2  +  qN2        =  wH2  +  wN2 
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And we can calculate these two work quantities immediately 
 
 WH2   =  nH2RTln(V/2)/V     =     - nH2  RTln 2 
 WN2  =  nN2RTln(V/2)/V     =     - nN2  RTln 2 
 
 so that WH2  + WN2  =         - (nH2  +   nN2)  RTln 2 
 
Therefore ΔSrev  = qrev/T = - (nH2  +  nN2)   Rln 2 
   
Note that this is clearly negative 
 
But this is for the “unmixing” so that for the initial mixing (irreversible, spontaneous) 
reaction  
 
 ΔSirrev = - ΔSrev  = (nH2  +  nN2)   RTln 2 
 
And this is clearly positive i. e., mixing would therefore be spontaneous with ΔS > 0 
 
 
The entropy change associated with a phase change, e.g., melting, evaporation, is 
 
 
ΔStransformation    =  

tiontransforma

tiontransformaH

T

Δ  

 
ΔH is the enthalpy and T the temperature of the transformation. 
 
 
The entropy change associated with heating is 
 

 ΔS  = 
dTC

T
pT

T ∫2
1

 
 
 
Problem 
 
  H2O (l, 263 K)   → H2O (s, 263 K) 
 
 Will this change occur spontaneously in an isolated system? 
 
  Cp (H2O, s) = 34.57 J K-1mol-1 

  Cp (H2O, l) = 71.48 J K-1mol-1 

Therefore ΔHf (H2O) = 5998.3 J mol-1 
      
     (ΔHf  ≡  Enthalpy of fusion) 
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 WORK DONE HEAT ABSORBED 
Isothermal curve AB and 
reversible in reservoir T2 

Step I RT2  ln Vb/Va RT2 ln Vb/Va 

Reversible, adiabatic 
expansion -temperature falls 
to that of lower reservoir  

Step II  
Cv (T2-T1) 

 
0 

At reservoir at T1-isothermal 
reversible compression 

Step III RT1  ln Vd/Vc RT2  ln Vd/Vc 

Reversible, adiabatic 
compression –temperature 
rises  T1→ T2 back to 
original state 

Step IV  
Cv(T1-T2) 

 
0 

 
Total work done is sum of four terms but WII = - WIV so that  
 
Wtotal  = WI + WIII = RT2 ln Vb/Va  + RT1 ln Vd/Vc. 
 
 
But now A and D lie on an adiabatic curve as do B and C. 
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Now by definition the efficiency of a heat engine is equal to the ratio of the total work 
done, Wtotal, in the cycle to the heat, Q2, taken in the higher temperature so that the 

efficiency of the hypothetical CARNOT ENGINE 
2

12

2

total

T
TT

Q
W −

= . 

 
Note that the lower the temperature of the sink, the greater will be the efficiency – 
absolute zero impossible at which the efficiency would be unity.  Similarly for a given 
temperature of the sink the efficiency will be increased by using a higher temperature 
source. 
 
Entropy Change From the first law  ΔU = 0 for the cycle 
   Qtotal  -  Wtotal   = 0 
 
Wtotal has been evaluated: Steps II and IV are adiabatic so that Qtotal is given by the sum of 
Q2 and Q1 absorbed at T2 and T1. 
 
 Wtotal   =   Qtotal  =   Q2  +  Q1  ≡  W  

 

  2

12

2

12

2 T
TT

Q
QQ

Q
W −

=
+

=
 

 
 therefore Q2  +  Q1  =  Q2  - 

2
1

T
T   (Q2 ) 

 therefore 
0T

Q  Σor    0T
Q

T
Qor  T

Q
T

Q
2

2

1

1

2

2

1

1 ==+−=
 

 
  
for an infinitely small change the steps may be replaced by  the integral 
 

 ∫∫ == 0  ds  that  so0
T
δQ

  
 
THIS SHOWS THAT ENTROPY IS A STATE FUNCTION 
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FREE ENERGY FUNCTIONS 
 

 
Available Energy 

 

 
Free Energy 

 
 

(Helmholtz Free Energy) 
 

(Gibbs Free Energy) 
 

F = U – TS 
 

 
G = H - TS 

Also known as the Work Function, F, but 
not so useful in chemical systems 
 

We will deal almost exclusively with G 
because it suits conditions of constant T 
and P 

 
Both are obviously state functions but apart from the definitions what are these functions? 
 
THE HELMHOLTZ FREE ENERGY FUNCTION, F  
 
 F  =   U - TS so that for an infinitesimal change 
 
 dF  =  dU  - TdS - SdT   If we assume constant temperature, then dT = 0 and 
 
 dF  =  dU  - TdS 
 
 
 also dU  = δq  - δw    so that     dF = δq - δw – TdS 
 
 and dS = deS  + diS  =   δq/T  + diS  so that  
 
 δq  =  TdS  -  TdiS 
 
 
Substitution gives 
 
 dF   =  TdS  - TdiS  - δW  - TdS 
 
  so that   dF  =  - δW  - TdiS 
 
 
for a reversible change  diS = O therefore TdiS = O  and  dFrev   = - δWrev 
 
for an irreversible change diS > O  therefore  TdiS > O 
   
   
                                     d Firrev < - δWirrev 
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 Reminder: F is a state function so that dFrev = dFirrev 
____________________________________________________________________ 

 
So that        - δWrev  < - δWirrev 

 
____________________________________________________________________ 

 
Reminder: W is the work done by the system; - W is work done on the system 
 
So for a given change of state the maximum obtainable work (work that can be done on the 
surroundings) is the reversible work.  This is the same for all reversible paths and is – dF. 
 
  This is the origin of terms “available” or “free energies” 
 
  

 
 
 
 

THE GIBBS FREE ENERGY FUNCTION, G 
 
Follow a similar sequence to show 
 
 
  dGrev   = - δW/  at constant T and P with 
  dGirrev = - δW/  δW/ ≡  work other than PdV work 
 
 
if W/ be taken as zero i.e., no work other than “pressure volume” work then 
 
 dG =  0  System at equilibrium  
 
 dG <  0 process has a tendency to proceed spontaneously  
 
 dG >  0 process will tend to be spontaneous in the opposite direction. 
 
 
____________________________________________________________________ 
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THE THIRD LAW OF THERMODYNAMICS 
 
The interest here lies in the determination of values of ΔG from purely calorimetric (that is 
the determination of heat changes) measurements. Enthalpy changes can be determined in 
this way using a calorimeter as you have done in the laboratory (thermochemistry) and it 
turns out that the entropy values for a substance can also be determined calorimetrically if 
we can say something about the value of that entropy when the substance is at the absolute 
zero of temperature.  Historically this objective (to obtain Gibbs Free Energy values from 
calorimetric measurements) was approached incrementally over a period of years as our 
knowledge of thermodynamics increased and some of these efforts will be described in the 
lecture.   
 
The following statement of the Third Law made by Lewis and Randall in 1923 is the one 
that we will use because it is of most relevance in chemistry: 
 
If the entropy of each element in some crystalline state be taken as zero at the absolute 
zero of temperature, every substance has a finite positive entropy; but at the absolute zero 
of temperature the entropy may become zero and does so become in the case of perfectly 
crystalline substances.  
 
 
THIRD LAW ENTROPIES 
 
This provides the basis for what are called ‘third law’, ‘calorimetric’, ‘practical’, 
‘conventional’ and even ‘absolute’ entropies. The statement will also be very helpful for 
our understanding of something called residual entropy, which occurs in a number of 
substances that retain some entropy (i.e., disorder) even when they approach the absolute 
zero of temperature. 
 
The value of the third law entropy of a substance at any temperature is therefore 
determined by measuring the heat changes as the substance is heated up from or cooled 
down to the absolute zero of temperature to the temperature in question. These processes 
can be carried out, at least in our minds, reversibly and so   
 

ΔS   =   qrev / T 
 
can be evaluated for each step in the process.  The series of steps traversed may entail 
changes in phase and the heating of each of the phases as we progress from absolute zero, 
where all substances are solids, to the gas phase. Because we cannot attain the absolute 
zero of temperature an extrapolation procedure must be used at the lowest temperatures. 
Such a determination of Third Law entropy will be illustrated by considering the data for 
chlorine gas.  We will also use calorimetric data measured on the allotropes of sulphur, 
monoclinic and rhombohedral, to verify the Third Law. 
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RESIDUAL ENTROPY 
 
Finally we will consider the phenomenon of residual entropy more closely using two 
quite different examples. The first of these is carbon monoxide in which the molecules are 
not packed into a perfect crystal as absolute zero is approached. The second is hydrogen in 
which the phenomenon is due to the existence of two forms, ortho- and para-, which 
without a catalyst fail to attain their equilibrium mixture proportions as the substance is 
cooled. 
 
 
ENTROPIES AT TEMPERATURES OTHER THAN ABSOLUTE ZERO  
 
The Third Law opens the way for the determination, using calorimetric measurements, of 
entropies at temperatures other than zero Kelvin.  By combining these with enthalpy data 
we can therefore determine values of Δ G – and hence predict the position of equilibrium 
– from purely calorimetric measurements.  The value of the entropy of a substance at a 
temperature T Kelvin, denoted by STK, is related to its value at zero Kelvin,  S0K, by  
 

  
tionstransformaphaseOKTK

T
o ΔSdT

T
Cp    S   S ∫ ∑++=

 
 
 
     
 
                Each of these is equal to 
There will be at least one term  

for each phase: solid, liquid and gas         
tiontransformaeachfor

tiontransforma

tiontransforma

T
HΔ

  

 
 
See later the example for Chlorine gas where each of theses terms is dealt with and 
evaluated in detail. There is a low temperature extrapolation term, a term for heating the 
solid, a term for the fusion, a term for heating the liquid, a term for the vaporisation and 
finally a term for heating the gas. There is also a correction term for the ideal gas, 
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ENTROPIES AT TEMPERATURES OTHER THAN ABSOLUTE ZERO (II) 
 
 
CALCULATIONS FOR CHLORINE GAS 
W.F. Giauque and F.M. Powell, J.A.C.S., 61, (1939), 1970 
 
 

Temp. Range 
orTransition 
Temperature   

(K) 
 

 
 
Type of calculation/measurement 

 
 

Entropy mole-1 

(cal K-1)* 

0-15 From Debye function (0 = 115) 
Graphical from Cp for solid 

Fusion: ΔHfus = 1531 cal mole-1 

Graphical from Cp for liquid 
Vaporisation: ΔHvap = 4878 cal mole-1 

0.331 
15 – 172.12 16.573 

172.12 8.895 
172.12 – 239.05 5.231 

239.05 20.406 
 Entropy of actual gas at boiling point 51.44 
 Correction for gas imperfection 0.12 
 Entropy ideal gas at boiling point 51.56 
 (*1 cal = 4.184 Joule)  

 
 
 

This is experimentally measured third law entropy. 
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EXPERIMENTAL VERIFICATION OF THE THIRD LAW 
 
 
This is a relatively simple verification involving the forms of sulphur – monoclinic and 
rhombic.  Here the transition temperature from one form to the other is 368.5 K with ΔH = 
-96.0 cal mol-1.  At this temperature the two forms are in equilibrium but it is possible to 
obtain monoclinic sulphur stable below its transition temperature.  This can then be taken 
down as near as possible to absolute zero – the necessary calorimetric data can be taken on 
both forms. 
 
 
Experimentally 
 
 

 
81.8So dT

T
C    S   S

OK
R368.5 R

p

OK

R

368.5K

rhombic
+=+= ∫

 
 

 
04.9o SdT

T
C    S   S
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M
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p
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M
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23.0SS     S  S  that     so
OK
M

OK
R

368.5K

M

368.5K
R −−=−  

 
 
____________________________________________________________________ 
 
 
ΔH for the transition = -96.0 cal mol-1 

 

therefore 
1-1-

368.5
M

5.368
R K mol cal261.05.368/0.96     S   S −−=−

 
 

 
 
 

so that     
OK

R
S - 

OK
MS  = - 0.031 -1-1 K mol cal  

 
This may be taken as zero within the limits of the experimental errors involved. 
 
More accurate data are available for the system white-tin grey tin. 
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RESIDUAL ENTROPY 
 
For gases standard entropies can be calculated from statistical theories and spectroscopic 
data which give the energies in the various quantum states. To do this use the  SAKUR 
TETRODE equation: 
 
For a monatomic gas  ST = 2.314- RlnP - RlnT2

5   RlnM2
3 +  

 

  SO
T= 298.15  =  

  molJK 108.7   RlnM2
3 -1-1+

 
 
Polyatomic gases would have the above terms plus terms for vibrational and rotational 
entropies.  
 
The table below compares the values determined as above (labelled Spectroscopic) with 
experimental Third Law values determined using the method illustrated previously for 
Chlorine gas. 
 

 
Substance SSpectroscopic 

 

SThird Law 
 

 
N2 

 

 
191.45 

 
191.95 

 
O2 

 

 
205.04 

 
205.33 

 
H2S 

 

 
205.34 

 
205.54 

 
CO2 

 

 
213.57 

 
213.74 

 
C2N4 

 

 
219.43 

 
219.47 

 
H2 

 

 
130.60 

 
124.37 

 
CO 

 

 
197.85 

 
193.21 

 
The values in the table are for ideal gas state at 298.15 K in J K-1 mol-1 

 

The experimental Third Law values in the final column for H2 and CO are lower because 
the assumption that the entropy is zero at 0.0 K is not correct for these substances – the 
crystals contain residual entropy. Incidentally the agreement between the values 
determined by the two methods for the other substances shows the correctness of the Third 
Law.  
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Carbon Monoxide CO 
 

S = RlnΩ which in a completely random arrangement in the crystal is  
  
 Rln2  = 8.3144 x 0.6931 

           = 5.763   molJK -1-1
or 1.378 cal   molK -1-1

 
 
From the table Δ = 4.64 which implies that the orientation is not fully random. Good 
discussion of this in Chemical Thermodynamics by D.J.G.Ives. Note also the residual 
entropy of ice due to hydrogen bonding.  
 
 
Ortho- and para-hydrogen 
 
Rotational lines in far UV spectrum show 3:1 ratio in intensity which is consistent with the 
restriction of transitions to those between rotational states of even J = 0, 2, 4... 
(Symmetrical wave functions) or between odd states J = 1, 3, 5... (antisymmetrical wave 
functions). Latter have three times the statistical weight of the former – two kinds of H2  
molecules present – proton spin i = ½ (in units of h/2π). 
 
Symmetrical parallel spins – resultant spin of 1 so we have -1, 0, +1 with (2i + 1) = 3 
This is ORTHO 
 
Antisymmetrical (opposed) have a resultant of 0 so that (2i + 1) = 1 i.e., single weight 
This is PARA 
 
Normal hydrogen gas at room temperature is composed of 3 parts of ortho and 1 part of 
para hydrogen. These components separately give rise to rotational spectrum lines. 
 
As the temperature falls the equilibrium ortho to para ratio decreases so that as absolute 
zero is approached all of the ortho hydrogen present would be converted to para. The pure 
para hydrogen can go to J = 0 and so get rid of its rotational energy – ortho hydrogen, in 
contrast, cannot do this. See the diagram on the following page which illustrates this and 
shows how the residual entropy arises in hydrogen cooled in the absence of a catalyst that 
would  convert ortho to para form. Under these circumstances the room temperature ratio 
(3:1 of ortho:para) forms is retained through the cooling process. Compare the areas under 
the curves in the diagram to see the residual entropy. 
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¼ PARA  
¾ ORTHO 

 
 
 
 
 
 

 

 
 
 
  
 
 
 
 
 
 
 
 

This diagram illustrates the heat capacities excluding translations for ortho, para, the 
equilibrium mixture and a mixture containing ortho to para in a 3:1 ratio taken from W.F. 
Giauque, JACS,  52 (1930) 4816. 
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FOUR FUNDAMENTAL EQUATIONS FOR A CLOSED SYSTEM 
 
 
 
Derived by combining: dU =  δq - δw; δw = -PdV; 
 
    H = U  +  PV;  δqrev = TdS; 
 
    F = U  - TS;  G = H – TS 
 
______________________________________ 
 
 
1. dU = δq - δw 
 dU  = TdS – PdV   
 
 
2. H = U + PV 
 dH = dU + PdV + VdP 
 dH =  TdS  + VdP 
 dH = TdS + VdP   
 
 
3. F = U – TS 
 dH = dU – TdS – SdT 
 dF =  TdS – PdV – TdS  - SdT 
 dF = -SdT – PdV    
 
 
4. G =  H – TS 
 G = U + PV – TS 
 dG =  dU + PdV + VdP – TdS – SdT 
 dG = TdS  - PdV  + PdV + VdP – TdS  - SdT 
 dG =  - SdT + VdP      
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THE CHEMICAL POTENTIAL ( μi) 

 
 
We will now move on to consider open systems to which chemical species can be added 
or removed. This immediately creates the need to be able to express the effects of these 
changes in composition on the thermodynamic properties of the system. This is done using 
the concept of the chemical potential, which for a species i is given the symbol μi. In its 
most usual usage the chemical potential is considered to be the partial derivative of the 
Gibbs free energy function, G, with respect to the number of moles of the species i, ni, 
with the temperature, T, pressure, P, and the numbers of moles of all other substances nj≠i 
being held constant. So it is the rate of change of G with the number of moles of the 
component i that are added to or taken from the system.  
 

μi         =        (∂g/∂ni )T,P, nj≠i 
 

We identify the intensity factors Temperature and Pressure with the driving forces for 
transfers of energy via heat and mechanical work, respectively. The chemical potential, μi ,  
is also an intensity factor and is identified in an analogous way with the driving force for 
changes in chemical composition.  
 
Thus the term ‘potential’ has the same meaning as we place on an electrical potential. This 
implies that if the chemical of a species in two adjacent phases has the same value then 
there will be no tendency for that species to move across the interface. On the other hand 
if the chemical potential of a species in one of the phases has a higher value than in the 
other then this will cause that species to move from the phase in which its chemical 
potential has the higher value. So just as temperature differences drive heat transfers and 
pressure differences give rise to mechanical changes, differences in chemical potentials 
drive changes in chemical composition. On reflection this is hardly surprising since we 
have identified the Gibbs free energy, G, as the criterion for the direction of chemical 
change with the tendency for ΔG to become zero so that equilibrium can be achieved. 
 
 

THE CHEMICAL POTENTIAL AND EQUILIBRIA 
 
We will in the following lectures first examine a number of heterogeneous equilibria 
between phases using the principle that the values of the chemical potentials of each 
species must be equal in these phases if no transfer of that chemical species is to occur 
between them i.e., if they are at equilibrium. In this way a formal derivation of the Gibbs 
Phase Rule 
 

F  =  C  -  P  +  2 
 
will be possible. The Clapeyron and Clausius-Clapeyron equations will also be derived. 
The latter 
 

dlnP/dT  =  ΔHtrans /RT2 
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makes it possible to determine the heats of transformations from condensed to gaseous 
phases through a series of measurements of the vapour pressure of the condensed phase as 
the temperature is changed.  
 
We will then consider homogeneous chemical equilibria to determine the well-known 
relationship between the standard free energy for a chemical reaction and its equilibrium 
constant, K. This leads naturally on to the Van’t Hoff equation, which is a quantitative 
relationship between temperature and the value of the equilibrium constant for a chemical 
reaction 
 

dlnK/dT  =  ΔHrxn /RT2 

 

 
The integrated form of the Van’t Hoff equation is very much used because it can be 
utilised derive the enthalpy of reaction from two measurements of the equilibrium 
constant for the reaction made at temperatures that are reasonably close to each other. 
 
 The integrated form of this equation is: 
 
 

ln (K1/K2)   =   - (ΔHrxn/R) (1/T1-1/T2) 
 

 
where K1 and K2  are the equilibrium constants measured at the Kelvin temperatures T1 
and T2 , respectively, R is the gas constant and ΔHrxn is the enthalpy change in the reaction 
assumed to be constant over the temperature range examined. There are five potential 
unknowns (ΔHrxn, T1, T2, K1 and K2 ) in this equation so that if any four of them are 
known the fifth can be calculated.  Note that the measurements of K should be made at 
temperatures that are reasonably close to each other to allow the assumption to be made 
that ΔHrxn is not a function of temperature (cf. the Kirchoff equation as derived earlier). 
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THE CHEMICAL POTENTIAL OF A SPECIES i     -    ( μi) 
 
The chemical potential describes the contribution of a particular species in a many-
component system.  It is defined via the properties of single valued functions of many 
variables. 
 
 U = f (V,S,n1,n2n3, …)   ni = number of moles of species i 
 
for small changes in V,S, ni 
 
 

 dU =  ijn,S,V,i

i
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In a one component system all dn = O 
 
 dU  =  q – w  = TdS – PdV 
 
 

  
Factors

Intensity 
 T

S
U

V
U

nV,nS,
=⎟

⎠
⎞

⎜
⎝
⎛
∂
∂

−=⎟
⎠
⎞

⎜
⎝
⎛
∂
∂ andP  

 

 

for a open system we identify ⎟
⎠
⎞

⎜
⎝
⎛
∂
∂

in
U  with a chemical intensity factor μi – CHEMICAL 

POTENTIAL 
 

 dU = TdS – PdV + μidni 

 
_________________________________ 
 

or more generally 
 

 μi =  ijnP,T,in
G

ijnV,T,in
F

ijnP,S,in
H

ijnv,S,in
U

≠
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂

=

≠
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂

=

≠
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂

=

≠
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂

 
 
 
most usual usage is partial molar Gibbs Free Energy 
 
 

 μi

ijnP,T, ≠

⎟
⎠
⎞

⎜
⎝
⎛

∂
∂=

in
G  
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HETEROGENEOUS EQUILIBRIA   -  BETWEEN TWO PHASES 
 

Thermal Equilibrium 
 
  

no net transfer of heat 
any small transfers reversible 
condition dS = O 
 

 
α 

 
β 

 
i.e., for any small flow dq from α → β 
 
 dSα + dSβ must equal zero 
 

 
OT

dq
T

dq =+− βα   ∴Tα = Tβ  
 
 (if Tα  >  Tβ then heat flows irreversibly α → β) 
 
_____________________________________________________________________ 
 
Mechanical (Volume) Equilibrium   at constant T and V; dF = 0 
 
i.e. for any small expansion dV in α, corresponding –d V in β 
 
 dFα  + dFβ = O  
 
 -Pα dV  +  PβdV = O   ∴Pα = Pβ 
 
_____________________________________________________________________ 
 
 
Chemical Equilibrium     at given T and P; dG = O 
 
i.e. for any small transfer dni  moles of species i 
 
 dGα  + dGβ = O  
 
 μi

α (-dni)  +  μi
β(dni) = O  μi

α = μi
β 

 
______________________________________________________________________ 
 
Saturated Solution   μi (solution) =  μi (crystal) 
Boiling Point    μi (liquid) = μi (vapour) 
Distribution    μI (H2O) = μI (CCl4) etc… 
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GIBBS PHASE RULE (1876)     EQUILIBRIUM  
 

 
P Number of Phases:  A phase is homogeneous, physically 

distinct and mechanically separable part of 
the system.  Each phase must therefore be 
separated from other phases by a physical 
boundary e.g. 
 
(i)    any number of gases-mix to give  
       1 phase 
 
(ii)   saturated solution; solution,  
       undissolved solid and vapour  
       3 phases 
 
(iii)  CaCO3  CaO + CO2 two 

different solids and gas 3 phases  
 
 

C Number of components: Number of components of a system at 
equilibrium is the smallest number of 
independently variable constituents by 
means of which the composition of each 
phase present can be expressed either 
directly or in the form of a chemical 
equation. – Approach assumes a prior 
knowledge is available in form of 
description or chemical equation e.g. 
 
(i)   ice/water/water vapour 
       1 component 
 
(ii) CaCO3 (solid) CaO (solid) + CO2 
     (gas).  All phases can be made from 
     CaO, CO2  

      2 components 
 

F variance or number of Degrees 
of Freedom 

The state of a system is completely defined 
when every intensive variable has been 
assigned some fixed value.  The pressure, 
the temperature, the compositions of all the 
phases and all other properties are known.  
In order that such a state may be defined 
some minimum number of variables must 
be specified – number of degrees of 
freedom (variance). 
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General Case: Equilibrium with C distinct components in 
each of P phases 
To specify the state of each phase requires 
P,T and (C-1) 
i.e. 2 + (C -1 )  =  (C + 1) variables 
∴Total number of variables P(C + 1) 

 
 
 
Equations: Tα = Tb = Tγ………. 

 
Pα = Pb = Pγ………. 
 
μ1

α = μ1
b =μ1

γ…… 
 
μ2

α = μ2
b = μ2

γ…… 
- 
- 
- 
- 
 
μc

α = μc
b = μc

γ………. 
 
 

(P-1) equations 
 
(P-1) equations 
 
(P-1) equations 
 
(P-1) equations 
 
 
 
 
 
(P-1) equations 
 

 ∴Total number of equations (C +2) (P – 1) 
 
F  = the number of variables not fixed is 
therefore 
 
    =  P(C + 1) – (C + 2)(P – 1) 
 
 

Which gives            F = C – P + 2 Gibbs Phase Rule 
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ONE COMPONENT – TWO PHASES 
 

(CLAPEYRON AND CLAUSIUS-CLAPEYRON EQUATIONS) 
 
 
 
 
                                    A 
 
 
J        Liquid 

B 
                                                  Vapour 

                      C 
     Temp 

 
Heterogeneous equilibrium with one 
component in two phases.  Along the 
line OBJ 
 
   F = C – P + 2  =  1 – 2 + 2 = 1 
 
At fixed temperature the vapour 
pressure is fixed. 
 
 

 
As the temperature varies, the vapour pressure also varies i.e., the vapour pressure. is f(T) 
 
 
Apply equilibrium condition – μ must have same value in both phases μα   =  μ β  
 
If T is altered by dT, P shifts by dP and μ by dμ so that 
 
 d μα = d μβ - so that equilibrium is maintained. 
 
For a one-component system μ = G  i.e., it is the partial molar Gibbs Free energy. 
 
For changes in dP and dT  
 
     V ≡ molar volume 
 dG =  VdP – SdT  S ≡ molar entropy 
 
so that 
 
 d μα = Vα dP – SαdT = d μβ = VβdP - SβdT 
 

this gives 
ΔV
ΔS

βVV

βSαS
dT
dP

=
−

−
=

α
 

 
which is the difference in molar entropy of the phases divided by the difference in their 
molar volumes. 

  

J 

P 
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P 
 
 
 
 
 
 
  
                                 T 

 
Interest lies in the value of this 
derivative, dP/dT, at a specified 
temperature and pressure. 
 
For isothermal reversible (i.e., 
equilibrium) condition at constant 
pressure 
 

Sα - Sβ  = ΔS = ∫ T
pdq

 
 

 
T
ΔH1

== ∫ pdq
T

 

 
 

 

So that  VT
H

dT
dP

Δ
Δ

=
   

}COMPONENTONE
OFPHASESTWOANY
.EQTNCLAPEYRON

{  

 
_______________________________________________________________ 
 
A particularly convenient case arises when we deal with a gas and a condensed (solid or 
liquid) phase. 
 
Here (Vα - Vβ ) = (Vgas – V condensed phase)  ≅ Vgas 
 
 because Vgas >> V condensed phase 
 
If we now assume that the gas is ideal then 
 
 Vgas = RT/P so that 
 

  
2RT

HP
)P/RT(T

H
dT

dP Δ=
Δ

=
 

 

or  2
1

RT
H

dT
Plnd

dT
dP

P
Δ==

 
 
 
      CLAUSIUS-CLAPEYRON EQUATION 
__________________________________________________________________ 
 
For many substances over not too long a temperature range ΔHtransformation is essentially 
constant so that we can integrate the equation as follows 
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  ln }11{
212

1
TTR

H
P

P −Δ−=  

 
                                   
                                        
                                      
 
 
                Slope is 
                           -ΔH trans / R 
ln P 
 
 

 
1/T 

 
 
A series of vapour pressure 
measurements made at known 
temperatures can yield the enthalpy of 
the phase transformation. 
 
 
 
 

 
 
 
_____________________________________________________________________ 
 
What assumptions have been made in this derivation? 
 
_____________________________________________________________________ 
 
 
 

 
HOMOGENEOUS CHEMICAL EQUILIBRIUM 
 
General Chemical Equation 
 

 aA + bB  cC + dD  pb
Bpa

A

pd
Dpc

C
pK =  

 
At constant temperature and pressure the condition for equilibrium is that G is constant so 
that for any small change, dG = O. 
 
____________________________________________________________________ 
 
So far a small displacement of equilibrium – x moles left to right. 
 
 the mol of A that disappear   dnA =   - xa 
 the mol of B that disappear  dnB =   - xb 
 the mol of C that form   dnC  =   xc 
 the mol of D that form  dnD  =  xd 
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the free energy change associated with each is 
 
  dGi  =  μidni 
___________________________________________________________________ 
 
So that at equilibrium the values must satisfy 
 
 - xaμA – xbμB + xcμC + xdμD  = 0 
 
 aμA  + bμB  = cμC +  dμD 

 
At equilibrium μi of the components have values related by the same formal equation as 
the stiochiometric chemical equation. 
 
This means that if we can express the chemical potentials of substances in terms of their 
pressure or concentration and T, we can find the condition for equilibrium.  The way to do 
this in a variety of cases is set out below. 
 
 
 
_________________________________________________________________ 
 
 
 
CHEMICAL POTENTIAL OF A PERFECT GAS 
 
This is expressed relative to its standard chemical potential in a standard or reference state.  
We need to formulate the free energy change involved (remember this is reversible work 
done)  in moving from the reference to the state in question. 
 
State at the given temperature but difficult pressure: 
 

 Work = ∫
′′
′

V
V

PdV
  =   ∫

′′
′

V
V

dV
V

nRT
    =  '

"
V
VInnRT

 

Free Energy ΔG = - w = - nRTln V
V
′
′′

  = nRTln 'P
P ′′

  
 

 Δμ =  n
G

∂
Δ∂

  = RTln P
P

′
′′  

 
For expansion from a standard state P’ = 1.0 where μ = μo to another at pressure P 

__________________________________________ 
μ(P)  = μ0 + RTlnP 

__________________________________________ 
 

Chemical Potential of a Perfect Gas 
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HOMOGENEOUS REACTION OF PERFECT GASES 
 

Substitute μ= μo + RTlnP for each gas into the equation for equilibrium 
 
 a μA  +  b μB

   = c μc
  + d μD

   
 

a μA
o + b μB

o – (c μC
o  + d μD

o )  = RTln  p b
Bp a

A

p d
Dp c

c
  =   RTlnKp 

 
or   μo

 products - 
    μo

 reactants  = - RTlnKp 
      which is constant at a given T 
 
 ______________________________________________________ 
 
∴Equilibrium pressure function Kp must be constant at given temperature i.e., 
independent of pressure 
_____________________________________________________ 
 
We have also established its relationship to the standard free energy change 
 
  ΔGo  =  Δμo 

    so that lnKp = -ΔGo/RT 
 
      per mol or reaction 
______________________________________________________ 
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VARIATION OF Kp WITH TEMPERATURE 
 

(VAN’T HOFF ISOCHORE) 
 

( )
dT
ΔG/Td

R
1

dT
dlnKp −=  

( )
dT
ΔG/Td

 

 
 

= 
( ) 2/T

dT
dTΔG

dT
ΔGdT

⎭
⎬
⎫−

⎩
⎨
⎧

 
 

= 2RT

oΔH

 

= { } 2/TΔG  - ΔS)(T −  

 
=  2T

ΔH−

 
 
 
(VAN’T HOFF ISOCHORE) 
 
Integrated form if we assume ΔH not to be a function of temperature over a short 
temperature range (cf. Kirchoff equation!). 
 

 Ln 2

1

P

P

K

K

  =  - }
T
1

T
1{

R
ΔH

21

o

−  

 
____________________________________________________________ 
 
Kp1  measured at T1 
 
Kp2  measured at T2        Slope is 
                                             -ΔH rxn / R 
 

 

 
the standard enthalpy change for         ln Kp 
the reaction can be determined 
from these data 
  
 

         T
1

 
_____________________________________________________ 
 
 
Any assumptions? 
 
______________________________________________________ 
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FURTHER USES OF THE CHEMICAL POTENTIAL OF A SPECIES ( μi) 

 
 
We will now make further use of the same general approach and format as before i.e., the 
chemical potential of the component is expressed relative to a value in a chosen standard 
state to make it possible to develop equations governing ideal solubilities and their 
temperature dependences. We will also derive the thermodynamic basis for the colligative 
properties of solutions such as the depression of the freezing point, the elevation of the 
boiling point and osmotic pressure. 
 
In each case the chemical potential of the component in the solution written with reference 
to its value in a standard state is made equal to the value of the chemical potential of the 
pure component with which it is at equilibrium and this equation is then manipulated to 
extract the value of the quantity of interest e.g., the solubility of a solute in a saturated 
solution or the vapour pressure of a solvent over a solution containing an non-volatile 
solute or whatever is being considered, and the required relationship can be derived. 
 
 

CHEMICAL POTENTIALS IN IDEAL SOLUTION 
 
 
For liquid mixtures – solutions of non-electrolyes 
 
 
For each species: solvent is 1 and solutes 2,3.......i 
 
 

 
μi = μi

φ+ RTlnNi 
Standard State is the  
pure component 
N is the mole fraction 

 
For solutions of electrolytes and for solute species 
 
 

 
μi = μi

Ө + RTlnCi 
Standard State is the  
Infinite dilution 
C is the molar concentration 
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The difference between these standard chemical potentials μi
φ and μi

Ө  and the behaviour 
of non-ideal solutions is illustrated below: 
 

 
 
 
μi = μi

o + RTlnNi 
 
 
 
 
 
 
 

 
NON-
IDEAL 
RANGE

 
 
 

 
 
 
 
 

μo 

μ= μ φ + 
RTlnN 
 
 

                    lnC   N=1 
lnN=0 

   
 
If we substitute for μ into the general equation for chemical equilibrium – as we did earlier 
for gases – we get. 
 
  RTln KN  =  - Δμφ and RTlnKC = -ΔμӨ 

 

 Where     KN    =     
b
BNa

AN

c
DNc

cN
   and        KC = [ ] [ ]

[ ] [ ]bBaA

dDcC  

KN and KC are the mole fraction and concentration equilibrium constants for the reactions, 
varying with temperature, but not with composition, provided that all components behave 
ideally i.e., that their chemical potentials obey the ideal equations given. 
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EQUILIBRIUM BETWEEN IDEAL SOLUTION AND VAPOUR 
 

(Henry’s Law and Raoult’s Law) 
 
 
Vapour Phase: single species i at pressure pi   - the ideal chemical potential is therefore 
 

   μi  =  μi
o + RTlnpi 

 
Solution: Two species at mole fractions 
 
  N1  (solvent)    μ1 = μ1

φ +  RTlnN1 
  N2  (solute)  = 1 – N1   μ2 = μ2

φ +  RTlnN2 

 

_________________________________________________________________ 

 

 
These are two possibilities: either the solvent or the solute can be the vapour species. 
 
(a) FIRST CASE - Vapour is solute species   HENRY’S LAW 
 
 μ2

vapour  =  μ2
solution  at equilibrium  

 
 μ2

o  + RTlnp2 = μ2
φ + RTlnN2 

 
If we are interested in the mole fraction that is dissolved at equilibrium, N2, then this is 
therefore given by 
 
  lnN2  =  (μ2

o - μ2
φ)/RT + ln p2 

 
At a given value of T this is obviously constant so that we can write N2 = k2 p2   

 
This of course corresponds to HENRY’S LAW which was originally derived from 
empirical derivations. 
 
_______________________________________________ 
 
 
The solubility of a gas is therefore seen to be proportional to its pressure.  From the 
derivation of the equation we can also extract the meaning of the solubility coefficient k2. 
 
 k2  =  exp {(μ2

o - μ2
φ)/RT}  = exp (Δμv/RT) 

 
We can identify Δμv as ΔGv  i.e., the free energy change per mole for the transfer of 1 mole 
from the standard state in solution N2 = 1 to standard state in gas i.e., 1 atm. 
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                                        μ2
φ 

                                 N2  = 1 
-ΔH trans / R 
 
 
 
 
            Free energy 
             Δμv   of 
            vaporization 
 
                                      μ2

o 

 

 

(in solution at 
at temp. T 
liquefied gas) 
 
 
 
 
 
 
 
 
(in gas at 
p = 1 atm) 

 
Δμv is large and negative 
 
So that exp (Δμv/RT) will be 
small and decreases at an 
increase in T 
 
 
 
 
 
 
IDEAL SOLUBILITY OF 
GASES IS SMALL AND 
FALLS AS TEMPERATURE 
IS INCREASED 

___________________________________________________ 
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(b) SECOND CASE: Vapour is the solvent species  RAOULT’S LAW 
  
 μ1

vapour  =  μ1
solution 

 
 μ1

o   + RTlnp1 = μ1
φ + RTlnN1 

 
and now the vapour pressure of the solution at equilibrium is the property of interest and is 
given by 
 
 lnp1 = (μ1

φ    - μ1
o   )/RT + ln N1 

 
which is seen to be constant at a given temperature so that we can write 
 
            p1 = k1N1  RAOULT’S LAW – once again first derived  
  from empirical observations 
_______________________________________________________ 
 
But what is the value of this constant k1? 
 
Firstly it is the reciprocal of the Henry’s Law constant for the species (the standard 
chemical potential terms are reversed).  k1 is also the value of the vapour pressure of the 
pure solvent (N1 = 1) at this temperature, p1

o so that we have: 
 
   p1   =   p1

o N1 
    =  p1

o (1-N2) 
 
 Whence we have    (p1

o – p1)/ p1
o =  N2 

 
i.e.,  The fractional lowering of the vapour pressure of the solvent is equal to the mole 
fraction of the solute. This is an alternative statement of Raoult’s law. 
 
______________________________________________________________________ 
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IDEAL SOLUBILITY OF GASES 
 
k2 is the mole fraction dissolved at unit pressure (atmospheric) and is the Henry’s Law 
solubility coefficient – it is ideally equal to the reciprocal of the extrapolated saturation 
pressure of the liquefied gas at the same temperature, since the equilibrium equation, 
 N2 = k2 p2,  can equally well be expressed in Raoult’s Law form. 
 

 
p2

o is the vapour 
N2 = p2/p2

o pressure of the pure  
liquefied solute 
 

 
i.e.,  Ideal mole fraction solubility  
 (at p2 = 1 atm) = 1/p2

o 

 

Hence the ideal solubility can be readily calculated for any gas whose p2
o  versus T 

relationship is known in the liquid state and can be extrapolated to room temperature. 
______________________________________________________________________ 
 
The temperature variation of ideal solubility is the inverse of the temperature dependence of 
the vapour pressure. 
 

Ideal solubility decreases with increasing temperature – gradient is ( )
( )T
1d

2(lnNd  of the same 

value ⎟
⎠
⎞

⎜
⎝
⎛=

R
ΔH  but opposite in sign from that of the vapour pressure dependence 

 i.e., ΔHsoln     = ΔHvap. 

__________________________________________________________________________________________________________ 

 
 
 

Example:  for permanent gases p2
o at 298 K will be large: for CH4 = 370 atmospheres.  

Hence the ideal solubility is small - 370
1   =  0.0027 mole fraction.  The 

value found in non-polar solvents are 0.002 – 0.003. 
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EQUILIBRIUM BETWEEN IDEAL SOLUTION AND SOLID 
 
(Solubility Equation, Temperature Dependence of Solubility and 
Freezing Point Depression) 
 
The consideration of a system with these components allows us to develop a solubility 
equation and the dependence on temperature of the solubility if the solid is the solute. But 
if we choose the solid to be the solvent then we can develop equations to quantify the 
freezing point of an ideal solution. 
 
Solution  N1 solvent     Equilibrium Condition 
  N2 solute     μi crystal = μi solution 
 
Crystal  Ni = 1 

_______________________________________________________________________________________________________ 

 
FIRST CASE: some of the solute precipitates out to provide the solid phase 
 
Consider first the case where the solute is crystal – this represents a solubility equilibrium. 
The superscript C denotes a crystal (solid) phase. 
 
  μ2

C   =      μ2
φ  + RTlnN2        for saturated solution 

 
  lnN2 = (μ2

C μ2
φ)/RT = -ΔGos/RT 

 
    where ΔGos is the free energy of solution 
 
      and is ≡ μ2

φ - μ2
C 

 

 

 

 
 
 
 
 
 
 
 
 
 

 μ2
φ 

 
 
μ2

C =  μ2
φ + RTlnN2 

 
 
                                                                μ2

C  = constant    
 

 
 
 
ΔGs

o 
 
 
 

                     lnN2(sat) 
 
 
 

μ2
C 

 
 
N2 = 1 

 
 
 

lnN2 
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Temperature dependence of ideal solubility 
 

 dT
)2d(lnN

 =  ⎟
⎠
⎞⎜

⎝
⎛−

RT
ΔG

dT
d S

o
 

  

   =  2
s

oo
/RTΔHT

ΔG
dT
d

R
1 =⎟

⎠
⎞⎜

⎝
⎛− s  

 
Where ΔHo

s is the enthalpy of solution. 
 
The integrated form is  lnN2(sat) = -ΔHo

s/kT + constant. 
 

 or }
T"
I

T
I{

R
AH-   =ln '

o

2

2 −⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛ ′

′′

s

N
N

   

 
________________________________________________________________________ 
 
Now if T″ is the melting point of the solute then N2

″ = 1. 
 
Ideal liquids mix in all proportions and ΔHos = ΔHf (fusion of solute) 
 
For IDEAL solutions 
 
 

  }
T
1

T
1{

R
ΔH

=  lnN
f

f
2 −−  

 

   }
T

TT
{

R
ΔS

}
TT

TT
{

R
ΔH ff

f

ff
−

=
−

−=  

 
IDEAL solubilities of solids determined only by their m.p. and enthalpy (or entropy) of 
fusion. 
 
 Note:  that no properties of the ideal solvent are relevant. Why is this true? 
 
_______________________________________________ 
 
SECOND CASE the solvent freezes and provides the solid phase 
 
This is where the solvent is the crystal (at the freezing point of the solution) – this allows 
us to calculate the freezing point depression of the solution. At equilibrium we have:  
 
 μ1

c  =   μ1
φ + RTlnN1 
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Using the same argument as above but now in terms of the solvent (species (1)) leads to 
the same equation for the composition of the solution N1 in equilibrium with the melting 
(solvent) crystal. 

 

 lnN1    = 
}

TT
T-T

{
R

ΔH

f

ff−
 

 

   ≅ 2
f

ff

T

T
R

ΔH Δ
−   When T ≈ Tf  so that ΔTf is small 

 
So that the Freezing Point Depression, ΔTf, is given as 
 
 ΔTf   ≈ (-RTf

2/ΔHf) lnN1 

 

   ≈ (-RTf
2/ΔHf)(1-N2) 

 
   ≈ (-RT f

2/ΔHf) (-N2)   where N2 is small 
 
 

so that   ΔTf  ≈ 
f

f
2

ΔH
RT   N2         i.e., is proportional to the   

      mole fraction of the solute 
 

  ≈ ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

1000
M

ΔH
RT 1

f

2
f n2 for n2 moles of solute in 1000g solvent 

 
so that the cryoscopic constant of the solvent Kf can be calculated without ever making a 
measurement of a freezing point depression and is given by:  
       

   Kf         ≈     ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

1000
M

ΔH
RT 1

f

2
f     

     
    
All properties of the solvent – we can evaluate the cryoscopic constant (ideal)  if ΔHf , Tf 
and M1 are known. Note that these are all properties of the solvent. 
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μ 

 
 

Temperature 
 

IDEAL SOLUTION – SOLVENT EQUILIBRIUM 
(Osmotic Pressure) 

 
 
Solvent 
N1 = 1 

 
Solvent 
N1 = 1-N2 

 
 
 
 
 
hρg = π 

The osmotic pressure of ideal 
solutions 

  The chemical potential in the 
pure solvent is higher so that the 
solvent passes through the 
membrane 

 
h 

 
 
 
   

  μ1
soln. = μ1

φ + RTln N1 
 
1 

 
1, 2 

Pure 
Solvent 

Negative term 
N1 < 1 

  Osmosis – the passage of solvent 
through the membrane takes 
place 

Semi permeable membrane 
________________________________________________________________________ 
 
 
 
When this osmosis is stopped by the application of an additional osmotic pressure on the 
solution – μ1(solution) is raised to μ1

φ 

 

μ1 is solution with π   =   μ1in solvent (1 atm) 
 
 μ1

φ (π)  + RTlnN1 = μ1 in solvent at 1 atm 
 

μ1
θ

pure solvent

μ1 solution

μ1
o

 vapour 

ΔTb ΔTf 

μ1 crystal 
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 μ1
o(π)  - μ1

o(1 atm)   = -RTlnN1 
______________________________________________________________________ 
 
Work of compression of 1 mole from pressure 1 to pressure π 
 

  = 
dpV∫

π

1 1              ≈   
dpV

11∫
π

   ≈    V1π 
 
∴  Ideal solution comes to osmotic equilibrium when at a pressure 
 

 π = 
1

1

lnN
V
RT

−
 = 

)Nln(1
V
RT

2
1

−−
   

 

 π ≈ 
)(N

V
RT

2
1   for N2 small 

  

   ≈ 21

 2

1 nn
n

V
RT

+    ≈  
1

2

1 n
n

 V
RT  

 
 
 

i.e., the osmotic pressure  π ≈ RTC2  where  C2  =  
11

2

Vn
n  {molar concentration} 

 
Note: This equation has the same form as the equation of state for an ideal gas. 
 
 

πV =  π RT 


